《多多巴胺负载金属纳米颗粒的合成及其催化性能》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2020-06-28
  • 多多巴胺(PDA)是一种新兴的受自然启发的生物高分子材料,具有许多有趣的特性,包括自组装和通用粘附。PDA还能与各种金属离子形成配位键,在保护环境下经过热退火可还原为金属纳米粒子(NPs)。本研究以PDA为载体材料,在室温水溶液中合成了Pt NPs。电化学工作站对所得到的PDA-Pt纳米复合材料的催化性能进行了评价,其催化活性与Pt/C材料的析氢反应(HER)具有可比性。此外,在随后的热退火过程中,该策略还可以得到支持在PDA上的Cu、Ni和Cu - Ni NPs。用原位x射线衍射研究了纳米粒子的相演化,并用电子显微技术研究了纳米粒子的形貌。初步结果显示,PDA上的NPs也具有HER活性。这项工作表明,PDA可作为合成金属NPs的潜在支持物,可用于工程应用,如催化剂。

相关报告
  • 《中国科大揭示金属纳米催化剂尺寸效应》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • 金属纳米颗粒的尺寸效应对负载型金属纳米材料的催化活性和选择性有重要影响。从几何结构上看,随着金属颗粒尺寸的减小,低配位原子逐步暴露且比例渐渐升高,显著改变催化材料活性中心的结构和比例。从电子结构上看,金属颗粒的电子能级也因量子尺寸效应发生显著改变,极大地影响催化材料和反应物之间的轨道杂化和电荷转移。由于金属纳米催化颗粒的几何结构和电子结构随其尺寸同步改变,使得人们无法有效区分两种结构效应对催化反应活性、选择性的贡献以及对尺寸的依赖关系。如何揭示金属催化剂尺寸效应的内在本质,打破几何结构效应和电子结构效应与颗粒尺寸的强关联性,进而优化设计性能更好的催化剂,是目前多相催化领域的一大挑战。   针对这一问题,中国科学技术大学教授路军岭课题组和李微雪课题组展开实验和理论合作研究,首次揭示了金属纳米催化剂中几何效应和电子效应各自对催化反应随尺寸变化的调变规律,创造性地提出一种拆分剥离金属颗粒几何效应和电子效应的策略——金属纳米颗粒的“氧化物选择性包裹”。在具有重要应用背景的Pd催化苯甲醇选择性氧化到苯甲醛反应中,实现了高活性和高选择性转化。相关研究结果以Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity 为题,发表在国际期刊《科学进展》上(Science Advances,2019, 5, eaat6413)。   醛类化合物是合成精细化学品的关键中间体。醇选择性氧化制醛是重要的基本化工过程。路军岭课题组系统研究了苯甲醇选择性氧化反应中金属Pd催化剂的尺寸效应,发现Pd颗粒的催化活性和选择性随颗粒尺寸均呈“火山型”变化趋势(图1A,B):在大尺寸时,虽然选择性高,但比活性较差;在4nm处,虽然比活性较高,但选择性较差;而在小纳米尺寸时,虽然选择性较高,但比活性较差。为了剥离几何效应对此变化趋势的贡献,该课题组基于原子层沉积(ALD)技术,利用Al2O3和FeOx分别选择性地包裹Pd颗粒的低配位和高配位原子(图1C,D),在不改变颗粒尺寸和电子结构情况下,实现了对Pd颗粒暴露原子的低配位/高配位比例的精准调控,为研究几何效应对催化反应的单独贡献奠定了基础。基于该策略,研究团队发现当催化剂尺寸大于4nm时,几何效应占主导地位:尺寸越大,低配位原子比例越低,选择性越好;当催化剂尺寸小于4nm时,尽管低配位原子比例越来越高,但选择性却越来越好,光电子能谱(XPS)数据表明Pd的电子结构发生显著变化,预示着电子效应可能反转了选择性的变化趋势。   为了理解实验中观测的催化反应活性和选择性随尺寸变化的双火山曲线变化规律,李微雪课题组展开了第一性原理的理论计算研究。在理论上首次发现在大尺寸Pd催化苯甲醇选择性氧化中,高低配位Pd表面上活性氢物种的氧化与加氢两个反应路径的竞争是几何效应产生的关键:高配位Pd原子处的活性氢物种容易与表面羟基反应生成水,有助于苯甲醛的产生;相反,低配位Pd原子处的活性氢物种更容易对苯甲基加氢,从而有助于甲苯的生成。该结果揭示了实验上观测大尺寸几何效应产生的微观机制。基于不同尺寸的Pd团簇模型(图2),计算发现由于电子效应导致Pd的功函数随粒径减小逐步降低,和实验上观测到的光电子能谱数据变化规律一致,Pd颗粒和反应物中间体之间有更多的电荷转移,形成更强的化学键,从而降低了反应活性,使得加氢到甲苯变难,苯甲醛选择性提高。这一结果从微观上证明了在小纳米粒子时的确是电子效应反转了选择性随尺寸的变化规律。   综上所述,研究人员发现在较大(>4nm)和较小(<4nm)的颗粒上,几何效应和电子效应分别控制主导反应的性能,从而使催化反应的选择性和活性都随颗粒尺寸呈“火山型”变化趋势。在此基础上,通过“氧化物选择性包裹”4nm颗粒的低配位原子,有效抑制了副反应的发生,获得高比质量活性和高选择性的催化剂(图1)。该工作提出的“氧化物选择性包裹”金属纳米颗粒的策略,不但能够有效拆分剥离金属颗粒的几何和电子效应,而且打破了催化性能随颗粒尺寸变化的“火山型”曲线。该策略为理解催化反应中的几何效应和电子效应提供了有效手段,并且为设计高活性、高选择性的金属催化剂提供重要指导。   论文第一作者是中国科大化学与材料科学学院博士生王恒伟和美国韦恩州立大学博士顾向奎。通讯作者路军岭和李微雪共同指导了该研究。该项研究得到国家自然科学基金面上项目、国家自然科学基金重大研究计划、国家重点研发计划、中国科学院创新群体、中国科学院前沿重点研究课题、中央高校基本科研业务费、马克思-普朗克伙伴小组等资助。
  • 《利用聚合物开发3D打印中的金纳米颗粒》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-04-02
    • 3D打印,也被称为增材制造,已经成为一种非常有用的技术,用于制造非常小和复杂的结构。它最初的建立促进了个人和有趣的对象的创造,这些对象是由对技术感兴趣的人在家里打印出来的。 然而,随着时间的推移,越来越多的制造商开始转向3D打印方法,以比其他方法更低的成本生产复杂的定制零件。这是一个不断发展的科学、工程和制造领域,而且很可能在未来许多年内继续沿着这条道路发展。 与3D打印这种相对较新的技术不同,金纳米颗粒已经被使用了很多年——甚至在我们知道纳米颗粒是什么之前。这在4世纪的人工制品Lycurgus杯中表现得很明显,金纳米颗粒被证明是造成所观察到的二色性颜色的原因。 在现代科学中,金纳米颗粒已经被用于多种应用,从抗癌剂到表面等离子体成像增强剂,再到电子、催化剂、主动传感器材料中的导电管道,等等。 与更复杂的纳米颗粒相比,它们合成起来相对简单,而且它们的广泛应用意味着研究人员现在正在转向其他制造、使用和整合它们的方法。 近年来,研究人员开发了利用3D打印方法,在打印过程中将金纳米颗粒直接与聚合物和其他介质结合,从而生成包含金纳米颗粒的3D打印复合材料。 近年来,这一交叉领域取得了长足的进步,为光学和制药行业带来了广阔的发展前景。下面,我们来看看这个领域是如何发展的。 通过3D打印在聚合物中嵌入金纳米颗粒 利用这些技术的一种更成熟、更常见、更简单的方法是使用聚合物作为嵌入多种类型纳米颗粒(包括金纳米颗粒)的复合介质。 现在有很多聚合物纳米复合材料,但是最近的一项研究涉及到使用聚合物和金纳米颗粒来制造本质上是双色的3D打印复合材料(很像Lycurgus杯子),用作光学过滤器。 以聚醋酸乙烯酯(PVA)为载体,采用熔融沉积模拟(FDM)方法制备了纳米复合材料。当纳米颗粒- pva纳米复合材料干燥时,呈现出一种棕色反射和紫色透射的二向色效应,而用更传统的方法形成的类似纳米复合材料则没有这种效应。 研究人员还用这种双色材料制作了一个花瓶和一个水杯,虽然要使用,但它们需要涂上一层聚二甲基硅氧烷(PDMS),以防止水渗透到纳米复合材料中。 使用微流体 这一领域虽然没有那么发达,但却很有趣,它依赖于制造可用于合成金纳米颗粒的聚合装置,而不是在3D打印过程中使用它们。 研究人员利用FDM技术制造了一种聚乳酸(PLA)微流控装置,并将其置于聚甲基丙烯酸甲酯(PMMA)载玻片上,以制造微流控通道。这些微流体通道随后被用作反应室,通过连续流动的合成路线来制造金(和银)纳米颗粒,因为这可以防止聚合物通道被污染。 通过改变微流体的合成参数(浓度、温度、流速等),可以制备出不同尺寸的金纳米颗粒。 制造纳米金墨水 最近的一项研究涉及使用梳状聚合物体系结构来开发金纳米颗粒油墨。该团队使用了不同的逐步增长聚合和click化学方法来开发不同的聚合物体系结构(基于聚氨酯),可以包裹和封装金纳米粒子。 然后是(3D打印)喷墨打印的封装金纳米颗粒油墨。在许多情况下,金纳米颗粒油墨在喷墨打印时是不稳定的,因为纳米颗粒易于凝聚,但在封装时,聚合物稳定了金纳米颗粒,这意味着它们可以在表面打印而不会发生凝聚。 聚合物-纳米颗粒油墨被发现是长期稳定的(超过6个月)。金纳米粒子在制药工业中有很大的潜力,这种聚合物稳定印刷方法可以用于制造稳定的、定制的金纳米粒子生物传感器。 人们认为,这种方法也可以用于稳定和在聚合物中嵌入其他金属纳米颗粒,从而为更多的应用开辟了潜力。