《Sivers Photonics、Imec 和 ASM AMICRA 合作实现了 InP DFB 激光器的晶圆级集成》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2021-06-07
  • 瑞典Sivers Semiconductors AB 表示,其子公司 Sivers Photonics与合作伙伴比利时纳米电子研究中心Imec和德国AMICRA Microtechnologies GmbH 一起完成了一项联合硅光子学项目。在该项目中,研究人员实现了从 Sivers 的 InP100 平台到 Imec的硅光子学平台 (SiPP) 的磷化铟 (InP)分布式反馈(DFB)激光器的晶圆级集成。据估计,这将能够促进硅光子学在光互连、光检测和测距 (LiDAR) 以及生物医学传感等方面的采用。

    由于硅本身不能有效发光,缺乏高效的片上光源,许多硅光子系统目前仍然依赖III-V 族半导体制成的外部光源,例如磷化铟(InP)、砷化镓(GaAs),但是这些片外激光器通常会伴随高损耗、大尺寸和高封装成本等不足。

    Sivers Photonics 和Imec将使用 ASM AMICRA 最新的 NANO 倒装芯片键合机工具来应对这一挑战,以有效地将10mW激光功率从 DFB 激光器耦合到硅中。

    Sivers Photonics 的董事总经理 Billy McLaughlin 预计:“在Sivers Photonics的 InP100 制造平台上设计和制造的InP 激光源,将促进硅光子电路在各种商业应用中的采用。”

    据估计,Sivers、Imec和 ASM AMICRA 现在可以使用附加功能扩展硅光子原型,并允许客户开发超前的光子集成电路 (PIC)。市场研究公司 LightCounting 在 5 月份的《集成光器件报告》中预测,到 2026 年,硅光子产品将占所有集成光学器件的一半左右,在这一时期市场价值将达到300亿美元。硅光子产品的广泛应用将影响多个关键应用领域,例如数据通信、电信和光学传感。

相关报告
  • 《前沿 | 铌酸锂芯片上首次集成激光器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-05-05
    • 最近,尽管在集成铌酸锂光子电路方面(从频率梳到频率转换器和调制器)取得了长足的进展,但有一个大部件仍然不容乐观、难以集成,那就是激光器。 长距离电信网络、数据中心光互连和微波光子系统都依靠激光器来产生用于数据传输的光载体。在大多数情况下,激光器是独立的设备,在调制器之外,使得整个系统更加昂贵,稳定性和可扩展性更差。 现在,来自哈佛大学约翰•A•保尔森工程与应用科学学院(SEAS)的研究人员与Freedom Photonics和HyperLight公司的行业伙伴合作,开发了第一个完全集成在铌酸锂芯片上的高功率激光器,为高功率电信系统、全集成光谱仪、光学遥感和量子网络的高效频率转换以及其他应用铺平了道路。 SEAS电气工程和应用物理学的Tiantsai Lin教授和该研究的第一作者Marko Loncar说:"集成铌酸锂光子学是开发高性能芯片级光学系统的一个很有前途的平台,但是把激光器弄到铌酸锂芯片上已被证明是最大的设计挑战之一。在这项研究中,我们使用了从以前的集成铌酸锂光子学发展中学到的所有纳米加工技巧和技术来克服这些挑战,实现了在铌酸锂薄膜平台上集成高功率激光器的目标"。这项研究发表在《Optica》杂志上。 Loncar和他的团队为他们的集成芯片使用了小型但强大的分布式反馈激光器。在芯片上,激光器位于蚀刻在铌酸锂上的小井或沟槽中,在同一平台上制作的波导中提供高达60毫瓦的光功率。研究人员将激光器与铌酸锂中的50千兆赫的电光调制器结合起来,建立了一个高功率发射器。 SEAS的研究生和该研究的第一作者Amirhassan Shams-Ansari说:“集成高性能的即插即用激光器将大大降低未来通信系统的成本、复杂性和功耗。这是一个可以集成到更大的光学系统中的构件,可用于传感、激光雷达和数据电信等一系列应用。" 通过将铌酸锂薄膜器件与高功率激光器使用工业友好型工艺相结合,这项研究代表了向大规模、低成本和高性能发射器阵列和光学网络迈出的关键一步。接下来,该团队的目标是提高激光器的功率和可扩展性,以实现更多的应用。
  • 《光泵浦毫瓦级耳语回廊微腔激光器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-12-29
    • 近日,山东大学物理学院陈峰团队展示了一种新型的微腔激光器。该方案巧妙地将离子注入技术与传统的激光晶体Nd:YAG晶体结合,借助离子注入引入缺陷增强局部化学腐蚀速度,从而实现晶体薄膜的剥离,随后对薄膜进行图案化,得到毫瓦级输出的微腔激光器。该方案为微纳光学器件提供了新的研究思路。 该文章以“Optically Pumped Milliwatt Whispering-Gallery Microcavity Laser”为题发表在Light: Science & Applications,李慧琦博士为第一作者,谭杨教授与陈峰教授为通讯作者。 耳语回廊模式(WGM)由于其品质因子高、模式体积小等优势被广泛应用于低阈值激光器、量子通讯和生物传感等领域。WGM微腔激光器根据激光机制的不同分为半导体激光器和固体激光器两类,其中半导体WGM激光器已经实现了毫瓦级激光输出,成为光子集成芯片中光源的主要选择;然而固体WGM激光器的在光子集成芯片上的应用却受限于低输出功率和低光-光转换效率,造成这一现象的主要原因是固体WGM激光器的常用增益介质如稀土元素掺杂的铌酸锂和二氧化硅等材料具有热稳定性相对差,吸收/发射截面低等问题,使他们不能成为理想的激光介质。 另一方面,传统的激光晶体在固体激光器的应用中发挥着重要作用,其中人造晶体钇铝石榴石(YAG)由于其优异的光学性能、激光性能、物化稳定性等特点被广泛认可为固体激光器中最成功的的激光介质。经过几十年的研究,研究人员已经在不同稀土元素掺杂YAG晶体内实现了从可见到中红外波段的高功率激光输出。然而传统的YAG晶体缺乏成熟的薄膜制备技术,限制了其在微纳尺寸光学器件中的应用。 首先,研究团队提出了制备Nd:YAG晶体薄膜及微腔的概念图(图1)。其中,通过离子注入在晶体内部引入局部缺陷,借助金刚石滑刻刀对离子注入后的表面进行切割,增加缺陷层的暴露面积。随后利用缺陷层与非缺陷层之间的化学腐蚀速度差将表面晶体以薄膜的形式剥离下来。最后Nd:YAG微腔由聚焦离子束(FIB)刻蚀技术制备而成。由于离子注入引入的损伤主要集中在被腐蚀区域,该方案制备的晶体薄膜具有与块状晶体相似的光学性质及完整的晶格结构。 与传统的固体WGM激光器相比,Nd:YAG微腔激光器实现了毫瓦级激光输出,及高达12%的光-光转换效率。同时,受益于耳语回廊模式高Q的优势实现了5μW的低阈值WGM激光(图2)。 此外,研究团队设计了偏心微腔结构,通过在微腔内部设计小孔有效地将自由空间的泵浦光耦合进微腔内,改变了光纤耦合的泵浦方式,同时实现了单模激光输出。通过在泵浦条件保持不变的情况下控制微腔与波导之间的距离,研究了输出功率、激光阈值、光-光转换效率与波导和微腔之间距离之间的关系。(图3)在光泵浦微腔的片上集成应用中,波导耦合是最常用的耦合方式,然而,当泵浦光和信号光均由波导传输时,需要考虑两个波段的耦合效率。利用偏心微腔的结构可以保证泵浦光充分利用的同时在激光波段实现最佳耦合。 该工作为固体微腔激光器提供了新的研究思路。通过利用离子辐照制造缺陷的方式辅助制备晶体薄膜,将传统的固体激光材料与微纳光学平台相结合,为提高固体WGM激光的输出功率和光-光转换效率提供了新的方案。 图1:Nd:YAG晶体薄膜及微腔制备流程示意图 图2:Nd:YAG微腔激光。(a)不同泵浦功率下的输出光谱。(b)激光工作状态下Nd:YAG光学显微镜图。(c)模式1(λ1)输出功率与半高宽随泵浦泵率的变化。(d)模式2(λ2)输出功率与半高宽随泵浦泵率的变化 图3:偏心微腔激光性能。(a)偏心微腔激光示意图。(b)(i)偏心微腔显微镜图像。(ii)偏心微腔耦合显微镜图像。(c)不同泵浦功率下的激光光谱。(d)激光和泵浦光与微腔和波导之间距离的关系。(e)激光阈值和光光转换效率与微腔和波导之间耦合距离的关系