《日冕仪关键技术研究获进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: liuzh
  • 发布时间:2018-12-11
  •   10月22日,一架70mm口径的日冕仪样机在丽江日冕站成功地获得了日冕图像。这是我国在自主研发日冕仪方面首次获得突破,标志着我国已经掌握了日冕仪的关键技术,为未来顺利实施大日冕仪项目铺平了道路。

相关报告
  • 《全球海洋变暖研究获进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-04-06
    • 自美国国家海洋和大气管理局(NOAA)研究员S. Levitus于2000年在《科学》(Science)撰文正式发布第一条全球上层海洋热含量变化时间序列,发现20世纪下半页全球海洋次表层升温的现象以来,全球海洋到底变暖了多少,一直是一个争议不断的问题。2013年发布的国际政府间气候变化第五期评估报告(IPCC-AR5)列出的5个海洋热含量变化趋势估算中,最小的估计竟只有最大的估计的一半。对海洋变暖速度估算的不确定性,一方面限制了人们对全球变暖的科学认知,影响地球系统能量不平衡、气候敏感性等关键气候参数的估算;另一方面也阻碍了对气候模型的评估:从能量变化的角度,气候模型能否准确反映出过去的气候变化,进而对未来做出合理预估呢?   中国科学院大气物理研究所副研究员成里京联合美国圣-托马斯大学J.Abraham、加州大学伯克利分校Z.Hausfather和美国大气研究中心K.Trenberth在Science上撰写perspective论文,对上述问题进行了解答。   海洋变暖多少的争议来源于过去海洋观测数据质量和数量的不足。自IPCC-AR5发布以来,研究人员发现传统的估算方法低估了过去几十年海洋热含量上升速率。虽然2005年之后,海洋科学家们在海洋中布放了一些新的仪器Argo,得到了较好的全球海洋热含量估计。但是科学家们永远无法穿越到2005年之前,重新用高精度的仪器观测过去的海洋状况,因此海洋数据领域科研人员一直在持续不断地改进旧数据的质量、发展新的技术以更准确地重构过去海洋的状态。   大气所团队多年研究解决了历史海洋热含量估计中的一系列问题,于2017年提出了一个新的海洋上层2000米热含量估计;同时日本气象厅、澳大利亚联邦科学与工业研究组织、美国普林斯顿大学等也提出了更新的或改进的方法对海洋热含量变化进行估算。这些新的方法显示出非常一致的自1955年以来的全球海洋热含量上升趋势。   最近一些估计一致性表明:热含量研究领域已经逐步解决已有问题,可以对全球海洋变暖做出更准确的计算了。根据最新估算,1971-2010年间全球海洋上层2000米变暖速率为0.36~0.39 Wm-2。新的估算显示出比IPCC-AR5更强的海洋变暖速率:IPCC-AR5的同期估计仅为0.20~0.32 Wm-2。海洋变暖在上世纪90年代后显著加速:1991年后海洋上2000米变暖速率为0.55~0.68 Wm-2。这直接反映了大气中不断积累的温室气体对海洋的影响。   气候模型能否准确模拟过去的海洋变化呢?Science研究表明,耦合模式比较计划5(CMIP5)模型集合平均可以非常好地模拟历史海洋变暖:1970-2010年间,CMIP5模拟的海洋上层2000米变暖速率为0.39 Wm-2,与最新的观测几乎一致。模型对过去情况的优秀的模拟效果极大提升了其对未来预估的可信程度。根据CMIP5模型预估,在rcp8.5情景下(假设未来不施行任何气候政策),2081-2100年间,整个上层2000米海洋将平均变暖0.78摄氏度(相对于1991-2005年的平均状态),这是过去60年海洋变暖总量的6倍。在rcp2.6情景下(假设未来将接近或达到《巴黎协定》目标),2081-2100年间海洋上层2000米将平均变暖0.4摄氏度。   人类活动已经深刻地改变了海洋环境,海洋增温已经造成了海平面上升、溶解氧下降、极端事件加剧、珊瑚白化等后果。然而,由于海洋对温室气体响应的“滞后效应”,海洋正在加速变暖,更强的海洋增暖将发生在本世纪。即使接近或者达到《巴黎协定》目标,海洋升温及其带来的影响也将持续。若不积极应对,未来人类和地球生态系统都将面临严重的气候风险。   论文于北京时间2019年1月11日上线,得到国际媒体的广泛关注。美国国家航空与航天局戈达德空间科学研究所主任Gavin Schmidt在接受采访时指出“海洋热含量确实是地球系统能量不平衡的最佳度量”,评论文章称“该发现进一步验证了已有的科学研究工作,并为本世纪末的气候预估提供了更强的可信度”。
  • 《中国科学家首次观测到化学反应中的“日冕环”现象》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-08-01
    •         近日,中国科学技术大学王兴安教授和我所孙志刚研究员、张东辉院士、杨学明院士合作,首次利用自主发展的目前最高分辨率的交叉分子束离子成像技术,观测到了化学反应散射中日冕环的现象,并结合量子分子反应动力学理论分析,首次揭示了该现象所隐藏的反应动力学机理。该研究成果发表在《自然化学》(Nature Chemistry)上。   当大气中的微小水滴被阳光照射时,如果气象条件良好,人们可以在太阳周围观察到一系列美丽的光环,大气光学中称之为日冕环。大气光学的研究表明,这一自然现象的产生源于光在水滴表面前向衍射所产生的光干涉图像。就物理角度而言,其产生的原理与著名的杨氏双狭缝干涉现象极为类似,均是由光量子的波动特性而产生的干涉现象。更值得一提的是,日冕环的结构可帮助人们直接分析推测出空气中水滴的大小。         与大气光散射相似,气相化学反应从严格意义上来说是原子与分子的散射过程,比较独特的是,在这一散射过程中伴随着旧化学键的断裂和新化学键的形成。反应产物的空间散射结构,直接反映了化学反应进程的微观机制。因此,对分子态-态分辨的散射动力学的研究是深入理解气相分子反应机理的重要方法。近年来,速度成像技术逐渐成为研究化学反应机理的重要实验方法。为了能够更加准确的获得反应态-态信息,研究人员一直致力于提高成像实验的分辨率。   王兴安和杨学明领导的团队自主研制了一台独特的结合阈值激光电离技术以及速度成像技术的交叉分子束反应动力学研究装置,使得实验上获得的H原子产物的速度分辨率达到了世界上同类仪器的最好水平。利用这一装置,研究小组开展了对化学中最经典的H+HD→H2+D反应的实验动力学研究。他们首次测得了这一反应产物全量子态分辨的产物速度影像,并且在实验上首次观测到了反应前向散射产物中存在的角分布振荡现象。孙志刚和张东辉等人通过精确量子动力学分析,发现这一角分布振荡现象其实是由散射过程中的少数几个分波散射的角分布结构引起的。通过对这些振荡结构的测量和分析,我们可以了解到引起前向散射的反应过渡态和中间体的大小,也可以知道这些前向振荡结构是具体来源自哪几个散射分波。通过他们的研究发现,这些在化学反应中首次发现的前向散射振荡结构在三维散射图像中与大气光学中观测到的日冕环的散射图像非常相似:通过观测光与水滴的日冕环散射,我们可以了解自然界中的水滴的大小;而通过观测化学发应中的前向角分布振荡结构,我们可以清晰地研究化学反应的过渡态结构以及动力学。         这项研究工作得到了国家自然科学基金科学中心项目和中国科学院战略先导项目(B类)的支持。