《离心多纺安全、经济生产高性能聚合物纳米纤维》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2021-04-18
  • 与传统静电纺丝方法相比,该方法每小时的纳米纤维生产速度提高了300倍,可能用于开发新型冠状病毒防护口罩过滤器等。

     

    纳米纤维可以用来制造理想的口罩过滤器,因为它们与气溶胶粒子的机械相互作用使它们有更高的能力捕捉超过90%的有害颗粒,如细粉尘和含病毒的液滴。

     

    近年来,COVID-19大流行的影响还加速了对更好类型口罩的需求增加。随着大流行倾向于持续下去,人们对一种基于聚合物纳米纤维的口罩过滤器的需求越来越大,这种过滤器能够更有效地捕捉有害颗粒。

    “静电纺丝”是一种制造精细甚至聚合物纳米纤维的通用工艺,但考虑到成本效益、批量生产和安全性,它有各种缺点。

     

    静电纺丝技术需要导电靶和高压电场,这阻碍了聚合物纳米纤维的安全经济批量生产。

     

    作为对这一缺陷的回应,“离心纺丝”是一种更安全、更经济的替代静电纺丝的方法,它使用离心力而不是高压来产生聚合物纳米纤维。

     

    简单的可扩展性是另一个优势,因为这种技术只需要一个收集器和一个旋转的吐丝器。

     

    但由于目前的离心力纺丝技术仅使用一个旋转的喷丝板,生产效率受到限制,与“多喷嘴静电纺丝”和“无喷嘴静电纺丝”等一些先进的静电纺丝技术相比,效率也相差不大。即使吐丝器的尺寸扩大,这个问题仍然存在。

     

    从这些缺陷中获得灵感,在韩国科学技术学院化学和生物分子工程系教授Do Hyun Kim的指导下,一组研究人员设计了一个可批量生产的离心多纺喷丝器。他们通过将一个旋转的吐丝器分成三个子盘来实现这一点。

     

    该研究作为封面文章发表在ACS Macro Letters杂志,第10卷,2021年3月第3期。

     

    该论文的主要作者兼博士生Byeong Eun Kwak和他的同事Hyo Jeong Yoo和Eungjun Lee使用这种带有三个子盘的新型离心多纺喷丝器来演示几种克级聚合物纳米纤维的合成,其最佳生产速率可达25克/小时,比传统静电纺丝系统高出300倍左右。

     

    高达25克/小时的聚合物纳米纤维产量,与实验室规模的生产系统每天大约30个口罩过滤器的产量相匹配。

     

    该团队通过将大量生产的聚合物纳米纤维结合成口罩过滤器的形式,能够制造出过滤性能与韩国市场目前可用的KF94和KF80口罩相当的口罩。

     

    KF94和KF80口罩已获得韩国食品和药品安全部的批准,可分别去除至少94%和80%的有害颗粒。

相关报告
  • 《基于电纺聚偏二聚偏银纳米线复合纳米纤维的高性能Triboelectric纳米发电机》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-24
    • 介绍了铁电聚合物-金属纳米线复合材料纳米纤维的制备方法。以电纺聚偏氟乙烯(PVDF)-银纳米线(AgNW)复合材料和尼龙纳米纤维为主要材料,分别在塔顶和底端三体电层中使用。电纺的过程促进了单轴拉伸的聚合物链,这增强了面向高度结晶的形成β-phase PVDF的大多数极性结晶阶段。添加AgNWs进一步促进β-phase晶体形成通过引入静电纳米线的表面电荷之间的相互作用和PVDF的偶极子链。β-phase程度的形成和产生的表面电荷的变化可能在添加纳米线进行了系统地分析使用x射线衍射(XRD)和开尔文探针力显微镜技术。在PVDF矩阵中加入纳米线后,诱捕诱导的三体电荷的能力就增加了。增强的表面电荷电位和pvdf - agnw复合纳米纤维的电荷捕获能力显著提高了TENG的输出性能。最后,通过在PVDF熔化温度附近应用热焊,使电纺纳米纤维的机械稳定性得到显著提高。 ——文章发布于2017年11月14日
  • 《《Nature》:聚合物升级循环的概念和未来的发展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-04-02
    • 塑料是构成现代工业和人们生活的最基本的材料之一。是世界上最大的合成消费品,2018 年的年产量达到 3.59 亿吨。是包装、建筑材料、电子、生物医学设备和能源储存等多种应用的首选材料。塑料制品之所以成为人们最为重视的材料,是因为塑料制品拥有重量轻、成本低、易加工、性能多样等巨大的优势。尽管如此,塑料废物的报废管理并没有以与其生产成正比的速度发展。塑料制品的不当处理所产生的塑料废物的积累对环境产生了诸多负面影响。因此,制定减少、再利用和回收塑料废物的战略是一项紧迫的科学和社会挑战,不仅要减少污染环境的废弃塑料的数量,还要减少因制造原始塑料而造成的温室气体排放。 当前最为常用的回收塑料制品的方式是对废旧塑料进行焚烧。这种方式是最快实现塑料中储存能量回收的方式,但是从长远来看不会创造经济价值或减轻材料的资源消耗,同时释放二氧化碳和其他有害气体,进一步加剧气候变化。虽然西方国家在过去30年前就开始实施大规模的塑料再利用战略,但即便到了2019年,欧洲从城市固体废物中收集的塑料中也只有 32.5%,美国的这一数据更为可怜的8.7%被回收。而在其他发展中国家,塑料制品的有效回收利用率一般低于5%。而受限于回收技术,回收的塑料中由于分选错误和各种污染物的存在,使得回收塑料的机械性能大幅下降。因此,消费后塑料的机械回收通常会导致所谓的降级回收材料的质量和/或实用性下降。相对于传统的机械回收所面临的这种困境,化学回收正在成为一种新兴的回收方式。该方法可以将废弃的塑料被转化为高纯度单体,以重新聚合成相同的材料。然而,使用现有技术,只有一小部分商品塑料可以以节能和经济高效的方式进行化学回收。 机械或化学回收的塑料作为一种起始原料,比石油合成的同系物更昂贵。另一种方法是将塑料废物视为化学原料,从而将其定位在价值链的起点而不是终点。在这样的框架下,消费后的塑料垃圾成为合成材料或分子的低成本和丰富的起始材料。寻找将消费后塑料转化为具有附加经济价值的材料的解决方案仍然是一项巨大的挑战,需要回答复杂且相互关联的化学、经济和环境问题。这一新框架有时被成为升级循环(upcycling)。 在这一综述中,来自西班牙巴斯克大学的Haritz Sardon、美国北卡罗来纳大学教堂山分校的Frank A. Leibfarth以及比利时根特大学的Steven De Meester团队根据获得的产品类型(聚合物、分子和材料)总结讨论了聚合物升级循环的概念和未来的发展。该总结以“Critical advances and future opportunities in upcycling commodity polymers”为题发表在《Nature》上。 【升级循环的概念和定义】 Gunter Pauli 最早于1999年在同名书中首次使用“升级再造”一词来指代任何将副产品、不需要的或废品转化为更高价值的新材料的过程。升级再造方法寻求将废塑料重新利用成具有更高“价值”的产品。该方法创造的价值相比单纯的经济价值更加广泛。在这一框架中,可持续替代的概念最为重要。可替代性意味着升级后的产品需要在一定程度上与替代产品的功能等效,以用于特定的最终用途,但不排除产生具有未知潜力的替代产品。量化可持续的可替代性需要考虑替代材料的制造与它所替代的材料相比的能源效率和环境影响,以及升级后的材料被回收和/或升级的潜力。 【聚合物到聚合物转换】 聚合物到聚合物的升级循环导致废弃塑料直接转化为成分不同的聚合物,这种聚合物比母材更具经济价值。聚合物到聚合物的升级循环具有两种方式:通过合成新的构筑基元将塑料废物转化为新的聚合物;以及塑料废料的后功能化以获得具有增强性能的新材料。 解聚以及重新聚合策略:实现第一种方式的策略主要是将聚合物解聚成不同的构件,以便随后聚合成不同的材料。例如,解聚研究最深入的例子是聚对苯二甲酸乙二醇酯 (PET) 的酯基反应,它提供了内在的逆合成处理,可在再聚合成不同聚合物(包括嵌段共聚酯、聚氨酯涂料或聚异氰脲酸酯)之前酯交换成低聚物片段泡沫。最近,通过解聚和随后与生物衍生的酯和酸的聚合,PET也被重新用于玻璃纤维增强塑料 (FRP)。结合生物来源的单体和回收的 PET,优化的材料在机械性能(存储模量)方面优于比较标准的石油基 FRP,同时消耗更少的能量和排放更少的温室气体。 将塑料废物升级为新聚合物的另一种选择是利用酶和微生物的独特能力来介导解聚和随后的再聚合过程,已经有报道将废弃的 PET、聚苯乙烯和混合塑料废物通过生物介导的方式转化为聚羟基链烷酸酯 (PHA)。PHAs 特别有吸引力,因为它们易于生物降解用于可持续包装材料。 功能化策略:聚合物功能化,也称为聚合后改性,是区分原生塑料性能的常用工业方法。与化学回收相比,聚合物官能化是乙烯基聚合物的一种有吸引力的方法,因为它们的解聚具有高焓阻隔和缺乏固有的功能。对于一些乙烯基聚合物来说,由于其特殊的稳定性,导致常规的化学修饰难以对其进行有效的官能化,因此,C-H 功能化已成为一种有吸引力的方法,可以在提高商品材料价值的同时保留母材的有益属性。最近的研究也集中于通过开发创造性的催化剂实现对聚烯烃的官能化,以安装羟基、黄原酸酯或其他极性官能团而不会伴随断链。同时,合理的官能团化也进一步增强了聚合物的性能,这些聚合物表现出增强的抗蠕变性和应力松弛。 【聚合物到小分子的转化】 将废弃塑料升级为小分子可以为合成化学品提供经济且可持续的替代品,否则这些化学品需要耗费大量劳动力或生产成本过高。以塑料废料为丰富的起始材料,通过选择性解聚以合成化学品为目标的化学转化具有大批量生产的潜力。 聚合物到单体的转变:聚酯,尤其是 PET,已被广泛研究作为解聚成小分子的基材,这主要是由于存在化学不稳定的酯基团以及已经存在的用于这种塑料的更好的收集和分类系统。虽然使用消费后塑料制备单体是一种有吸引力的方法,但与从石化资源制备类似分子相比,其优势尚不系统清楚。此外,这些新兴材料的市场大多未开发,与大量的塑料垃圾相比,它们目前的替代潜力仍然相对较小。未来的研究应通过生命周期评估 (LCA) 和技术经济分析 (TEA) 研究来确定这些方法的环境和经济优势。此外,还必须考虑开发能够耐受消费后废物流中的杂质(添加剂、染料、错误分类的聚合物和多层产品)的化学物质。 聚合物到化学品的转变:化学品是聚合物废料升级再造的另一个有吸引力的目标。聚酯和聚碳酸酯的过渡金属催化氢化和氢化反应产生多功能小分子,这些小分子在化学工业中已作为溶剂和试剂开发了市场。研究表明,这些后过渡金属的官能团耐受性使其适用于不纯的消费后废物流,显示出在与来自城市固体废物的废物相关的条件下使用它们的前景。 聚合物到添加剂的转变:即使是原始的聚合物材料在实际应用中也常常表现出不足的物理性能,并且必须将添加剂加入聚合物中以提高其可加工性和适用性。 【聚合物到材料的转化】 商品聚合物及其混合物可以作为一种受人关注的其实材料,用于生产纳米材料、能量存储以及各类复合材料等。该文中中,作者讨论了两种将聚合物转化为功能材料的策略:热处理以产生碳基材料和增容以实现聚合物共混物。与从头合成的材料相比,实现具有相似甚至更高性能的材料有可能减少石化资源的使用,并将废物转移回市场。 聚合物到纳米材料:碳氢化合物占非纤维商品塑料的 64%以上,将其转化为用于能源生产和储存的碳基纳米材料是一种具有更高经济价值的先进材料的有吸引力的方法。 聚合物到共混相容剂的转变:混合塑料废物的增值对于任何回收过程,无论是机械的还是化学的都是一个巨大的挑战。在这种情况下,非常需要一种从塑料废物混合物中获得额外价值的策略。一种有希望的选择是共混相容性,它降低了不同聚合物相之间的界面张力,并产生了代表两种材料协同组合的特性。 推进塑料可持续应用需要解决多方面的挑战,具有相当的复杂性。本文详细介绍了聚合物升级循环的概念和应用。在本文中,作者建议将升级循环重点放在从头合成产品的可持续替代上。这种替代可以通过考虑三个标准来指导:环境影响、工业相关性和经济价值。将这些原则应用于最近的研究,可以得出关于聚合物升级循环现状的三个广泛结论: 首先,以指导原则对该领域的现状进行基准测试表明,聚合物升级循环还处于起步阶段,在适合广泛实施之前面临相当大的挑战; 第二个关键发展领域包括在研究过程开始的时候整合材料性能、可持续性指标(LCA 和 TEA)、材料流动分析 (MFA) 和升级产品的市场容量等方面的内容; 第三,在技术开发过程中需要考虑升级后产品的报废情况。理想情况下,升级回收不仅可以延长塑料的使用寿命,还可以添加化学功能,使塑料更易于回收。 塑料仍然是保护食品、净化水、储存或产生能量、减少感染和制造高性能材料的最佳材料。鉴于它们在全球经济中的重要作用,需要制定一个全面且可持续的计划对达到使用寿命的塑料进行相关管理和回收。持续创新,重点是利用塑料废料生产因化学改性而具有高价值和高可回收性的材料,这是一个雄心勃勃的目标,将在向更可持续的塑料经济转变中发挥重要作用。