《介电衬底长出“高”“大”石墨烯》

  • 来源专题:科技大数据监测服务平台
  • 编译者: zhoujie
  • 发布时间:2019-06-25
  • 介电衬底长出“高”“大”石墨烯. . 顾长志(前排右)课题组正在进行石墨烯纳米器件加工。石墨烯以其独特的结构和性能蕴含了丰富而新奇的物理与化学性质,成为集优良力学、热学、光学和电学特性于一体的神奇材料,在信息器件与电路等领域具有广阔的应用前景,是目前信息科学发展最为迅速和活跃的研究前沿之一。 近年来,石墨烯研究已取得了一系列重要进展,新发现、新成果不断涌现,但总体来说在实用化信息器件方面仍面临很多挑战。特别是基于高质量大面积石墨烯的信息器件构筑及其特性研究备受关注。 自2014年起,在国家自然科学基金重大项目“介电衬底上高质量大面积石墨烯信息器件的构筑与特性研究”支持下,中国科学家瞄准领域研究前沿,针对石墨烯信息器件的一些关键基础问题,开展新概念、新方法和新技术的研究,在石墨烯信息器件的重大科学问题上取得了一系列进展。 超级材料石墨烯独特又完美 石墨烯是由单层碳原子紧密堆积而成的二维蜂窝状晶体结构,这种独特而完美的结构使它具有优异而新奇的特性。例如,石墨烯具有100倍于硅的超高载流子迁移率、高达130GPa的强度、很好的柔韧性,以及近20%的伸展率、超高热导率、高达2600平方米每克的比表面积,并且几近透明,在很宽的波段内光吸收只有2.3%。 这些优异的物理性质使石墨烯在射频晶体管、超灵敏传感器、柔性透明导电薄膜、超强和高导复合材料、高性能锂离子电池和超级电容器等方面展现出巨大的应用潜力。 “高”“大”石墨烯制备绝非易事 “能否在介电衬底上大面积、高质量地制备石墨烯是其应用能否真正实现的关键前提和基础,也是石墨烯研究领域的重点和热点。”该重大项目负责人、中国科学院物理研究所研究员顾长志告诉《中国科学报》。 自2004年以来,科学家们已发展出多种制备石墨烯的方法,包括机械剥离法、SiC或金属单晶表面外延生长法、化学氧化剥离法、插层剥离法及化学气相沉积(CVD)法等。其中,CVD法由于具有可控性高、结晶质量好、均匀、薄膜尺寸大等优势而成为制备石墨烯最为普遍的方法之一。 CVD法大多以过渡金属为生长基底,借助于其较高的化学催化活性,促进碳源裂解并在金属表面吸附、扩散、成核、生长形成石墨烯。通过调控生长过程的参数,可以实现大面积、层数可控、高质量且结构均一连续的石墨烯薄膜,经过工艺优化,可实现超大面积石墨烯单晶生长。 值得一提的是,在实际应用过程中,金属表面形成的石墨烯一般需要转移至介电层上,才可以进行下一步的器件加工。复杂的转移过程不可避免地带来石墨烯的破损、褶皱,金属、溶剂残留污染以及操作繁复、一致性差、成本高昂等问题。 为解决这一问题,研究者将目光投向了在介电衬底表面直接生长石墨烯。“如果能在介电衬底上直接可控制备大面积、高质量的石墨烯,就可以直接利用目前的微电子技术制备器件,实现与硅技术融合,这将会极大促进石墨烯的广泛应用和长足发展。”项目组成员、中国科学院院士高鸿钧表示。 然而,由于介电层表面能量较低,对碳源小分子的裂解以及石墨烯形成所产生的催化作用十分微弱,因而在介电衬底上直接生长石墨烯是一个研究难点。 长出“高”“大”石墨烯 如何将石墨烯的优异性能在器件中呈现出来?面对这一挑战,项目组改进了石墨烯的生长手段,尝试在多种介电衬底上生长石墨烯。 研究人员通过巧妙控制碳源的通入量和实验温度,利用扫描隧道显微镜直接观测到石墨烯生长初期的前驱体单元,以及前驱体单元在石墨烯成核阶段形成的链状结构。课题负责人、中国科学院物理研究所研究员杜世萱向《中国科学报》表示:“前驱体的发现表明,可以考虑通过控制碳源的通入来影响前驱体的产生,进而实现高质量、大面积石墨烯的可控生长。” 基于此,该课题组在国际上首次提出并利用“插层法”实现原位、无损地将Si、Ge、Mg、Hf等几种材料插入石墨烯与金属的界面之间,并克服重重困难对插层结构进行原位氧化,经过无数次实验摸索,终于获得高绝缘性的介电插层,实现了介电衬底上高质量、大面积的石墨烯材料生长。同时,通过石墨烯量子器件的加工印证了介电插层的有效性,引起了国际同行的关注与好评。 此外,研究人员还采用非金属催化的CVD方法,在多种绝缘基底上实现了微米尺度石墨烯单晶的直接生长和可控制备,获得大面积均匀的单层石墨烯膜,薄膜尺寸达3英寸。“这也为项目后期石墨烯器件的构筑与性能调控,以及高性能石墨烯器件的制备与优化提供了条件。”课题负责人、中国科学院化学研究所研究员于贵说。 为了将上述介电衬底上生长的高质量石墨烯应用于信息功能器件,中国科学院物理研究所研究员杨海方等人发明了一种双层掩模工艺,实现了亚10纳米石墨烯功能结构的精确、可控制备,解决了绝缘的介电衬底上利用电子束曝光制备石墨烯纳米结构的难题。同时采用电子束曝光及紫外光刻混合曝光方法,在4英寸的介电衬底上实现了石墨烯传感器器件和射频晶体管阵列的精确、大面积、一致性高效制备。 石墨烯器件的批量制备与优化 具有众多新奇特性的石墨烯被认为是一种非常有前景的信息功能材料。因此,电子器件和电路是石墨烯应用的首选领域,也是研究最为广泛的领域。石墨烯可以应用于磁传感器、高频电路、气体传感、光传感、柔性电子学等诸多方面。 顾长志告诉记者,项目组围绕石墨烯应用于构筑信息器件与电路的需求,在注意发展介电衬底上大面积、高质量石墨烯的可控制备及特性的同时,也积极探索基于石墨烯信息器件的构筑与集成。“在研究信息功能的石墨烯纳米结构制备及性能调控的基础上,我们制备了多种石墨烯信息功能器件并对其性质进行了深入研究。”他说。 研究人员提出了一种石墨烯波纹结构应力传感器,使应力测量范围超过30%,并设计出基于隧穿效应的纳米石墨烯薄膜应力传感器,使灵敏因子提高到500以上。在实际应用中,可以根据需求选择不同表面电阻和灵敏度的准连续石墨烯来构造应力传感器。 “这种基于石墨烯隧穿效应的应力传感器具有可拉伸、灵敏度高、稳定性强、透明等特点,其在人造皮肤、触摸屏等方面显示了巨大的应用潜力。”顾长志说。 石墨烯超高的载流子迁移率、低载流子浓度和很好的稳定性,是制备霍尔元件的绝佳电子材料。 课题负责人、北京大学教授彭练矛发展了一种工艺简单、成本低廉的石墨烯微加工技术,克服了器件接触电阻大这一难题,批量制备出了具备超高灵敏度和分辨率的石墨烯霍尔元件。该石墨烯霍尔元件的磁灵敏度达2093 V/AT ,分辨率达1 mG/Hz0.5,是目前最为灵敏和精确的石墨烯霍尔元件。“这种高灵敏度的霍尔传感器能够探测更小的磁场,降低后端放大电路的成本,因而有巨大的市场应用前景。”彭练矛告诉《中国科学报》。 此外,研究人员基于柔性石墨烯霍尔传感器,开发了一款柔性可穿戴位置传感系统。“将传感器贴在用户手指上,当磁体靠近磁场源,根据霍尔效应,输出的电压会有一个跳变。我们通过记录并处理电压信号,创新性地实现了虚拟键盘、虚拟电子琴和无接触密码锁的演示。”彭练矛介绍,这种高灵敏度的柔性磁传感器有希望应用于无接触密码输入、可穿戴娱乐和工业控制安全防护领域中。 此外,项目组还研制出具有独立功能的石墨烯/硅基CMOS线性霍尔集成电路、石墨烯倍频器、混频器和短沟道器件等。这一系列具有自主知识产权的高性能新原理石墨烯信息器件,有效提升了我国石墨烯信息器件的自主研发能力和在该领域的学术影响力,同时也造就了一支创新能力强、多学科交叉的国际一流研究队伍。 《中国科学报》 (2019-06-24 第4版 自然科学基金).

相关报告
  • 《起底广汽集团“石墨烯电池”真相》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-01-19
    • 上周五(1月15日)尾盘,广汽集团(SH:601238/HK:02238)“石墨烯电池”9月量产的消息引爆市场。当天,A/H两地市场的广汽,A股涨停收盘,港股则收涨19.5%,成交额分别达到10亿和37亿元。 不过市场里弥漫的乐观情绪甚至未持续过24小时。隔天举行的中国电动车百人会论坛上,欧阳明高院士的一番话,迅速为市场的热忱浇下一盆冷水,他说:“如果某一位说,(这个车)既能跑1000公里,又能几分钟充完电,而且还特别安全,成本还非常低,大家不用相信,因为是不可能的。” 图1:受“石墨烯电池”消息促动,广汽股价单日暴涨。来源:百度 “充电8分钟续航1000公里”,“续航1000公里”,广汽集团放出的这颗“电池卫星”究竟是怎么回事? 随着更多业内人加入讨论、官方的进一步解释以及我们在技术维度的研判,目前已大致确认3件事: 1. 广汽所谓“石墨烯电池”说法并不准确,但并非不切实际; 2. 该石墨烯电池主要涉及一项电池负极技术:以石墨烯作为导电添加剂的“硅基复合负极材料技术”。其中,石墨烯作为负极材料中导电添加剂的掺入(最多不超过8%),可以提升电池的高倍率充电性能,即辅助实现所谓的“充电8分钟续航1000公里”;基于“一核双壳”结构工艺的“硅基锂离子负极”,则可以提升电池循环稳定性、结构密度与放电倍率性,即实现所谓的“续航1000公里”。 3. 该电池同时涉及一项快充技术:在以石墨烯为三元锂电池正极材料导电剂基础上,通过一套降温冷却系统,而实现6C快充能力,即一种“充电8分钟续航1000公里”技术。 基于这样的基本事实,我们的结论是:广汽所称的“石墨烯电池”正确的命名应为“掺杂石墨烯的硅基负极锂电池”。这项电池技术并非新技术,但在工艺上有较大突破。该电池所标榜的性能参数,虽然有水分,但也有较大的实现可能性。 01 一颗旧卫星 实际上,长期追踪石墨烯技术的人士都知道,广汽这几天放出的“石墨烯电池”卫星,本身就是一颗“旧卫星”。早在2014年,就有一家名叫Graphenano(中文意为“石墨纳米”)的西班牙公司公司就号称已与该国科尔瓦多大学,联合研发出了全球首件石墨烯聚合材料电池。 在对外推介这件石墨烯电池时,Graphenano使用的参数话术就包括: ◆能量密度超过600wh/kg(即每公斤电芯可产生0.6度电。理论上,500wh/kg可以实现1000公里的真实续航); ◇单次续航里程可高达1000公里; ◆单次完全充电仅需8分钟以内; ◇使用寿命是锂电池的两倍。 …… 不过令人感到遗憾的是,Graphenano与科尔瓦多大学主导的这项实验室技术,迄今仍未走出PPT,时间过去6年多未见落地。 本质上说,无论是2014年的Graphenano还是2021年的广汽,它们所谓的“石墨烯电池”,都是希望通过“核—壳”结构工艺实现石墨烯与硅的结合,作为新的硅基负极材料,部分替代原来完全以石墨为核心的碳基负极材料,以提升锂电池的整体容量和充电速度。 故而,这种电池正确的命名方式应为“掺杂石墨烯的硅基负极锂电池”,本质仍是锂电池(因为使用量最大的核心正极材料未发生变化),而不是石墨烯电池。 图2:石墨烯概念图。来源:百度百科 02 有水分但并非不切实际 欧阳院士的一盆冷水非常及时,因为广汽所称的“1000公里高续航”与“10分钟快充技术”均存在一定水分,而且受制于现实产业链的配套设施不健全难以短期铺开。 但理性地说,广汽前瞻发布的这项“掺杂石墨烯的锂电池”,并非不切实际,“脱水”之后仍有较强的可行性与市场空间。 【1】先说水分:“掺杂石墨烯的锂电池”仍属于过渡技术,性能提升存在天花板。 我们几乎可以断定,在广汽版“掺杂石墨烯的硅基负极锂电池””中,石墨烯的作业是作用导电剂,以减小抗阻性、提升充放电的倍率性,即主要用于提升充电速度。 但对于对锂离子电池来说,石墨烯作为导电剂附着于硅基复合负极材料中(或同样作为导电剂附着于三元锂电正极材料中),没有办法从根本上改变锂离子电池的能量密度,在提升电池整体容量方面只起到辅助性作用。 在提升电池容量(或称能量密度)方面发挥主要作用的,是硅材料(纳米硅)。也就是说,广汽版“掺杂石墨烯的硅基负极锂电池”中,真正的主角是以纳米硅为核心的复合型(其实引入纳米硅后,石墨占比仍超过纳米硅)负极材料。 真正以石墨烯为主体材料的动力电池,目前尚无法在实验室中完全实现。故而,从截至目前的现实路径上看,固态电池的前景(以特斯拉4680无极耳电池为代表)还是要明显优于“掺杂石墨烯的锂电池”,后者只属于一种过渡技术。 一言以蔽,广汽所称的“石墨烯电池”,最核心突破还在于“一核两壳”结构工艺(下文会具体说)的硅基复合型负极材料技术;但鉴于掌管锂电池核心性能指标的还是正极材料,所以这项技术在电池性能提升方面存在显著天花板。 【2】再说现实意义:广汽的硅基复合型负极材料技术工艺以及电池快充技术,拥有理论数据支持,有着较为现实的应用前景与竞争力。 众所周知的是,硅是目前已知比容量(4200mAh/g)最高的锂离子电池负极材料,是石墨类负极材料的12倍多。故而,将纳米硅引入锂电池的负极材料中,部分替代石墨,理论上可以极大提升锂电池的能量密度。 目前,现有电动车的电池系统能量密度普遍为160wh/kg(比亚迪的汉EV电芯能量密度为170wh/kg,特斯拉model 3长续航版为161wh/kg),而广汽基于硅基复合型负极材料技术的“掺杂石墨烯的锂电池”,据说将能实现280wh/kg,即实现了57%的能量密度提升。 如果事实如此,那意味着:参照160wh/kg能量密度所对应的600公里NEDC续航,广汽“掺杂石墨烯的锂电池”的确可以实现1000公里NEDC续航。当然,具体到真实续航,往往还需要打上6、7折。 另外,关于这款电池的快充问题,目前有投资者质疑其是否噱头大于实质。而来自广汽集团方面的技术储备则显示,针对这个问题,它们的秘密武器是一项“包括壳体、液冷结构及设于所述壳体内的多个电芯模组”的动力电池系统实用新型专利技术。 该系统也涉及石墨烯——在正极材料中也添加石墨烯作为导电剂。该系统的核心在于基于石墨烯导电剂的“一套降温冷却系统”,使内部温度的一致性和安全性也能得到保障,进而确保搭载该系统的车辆可在10分钟(6C)内完成快速充电。 图3:不同材料的电阻系数与温度系数,第一列为石墨烯。来源:百度百科 这里简单说下什么是6C快充:目前对于快充并没有一个特别严格的定义,一般可以理解为在小于1小时内充电的制度(即充电速率大于1C),以区别于慢充数小时级的充电。根据早期美国加州空气资源委员会(CARB)的规定,电动汽车快速充电时间为10min(6C)。 不过必须指出得是,快冲技术在当前的实现,不仅取决于电池本身,更取决于高功率充电桩技术的推广。这也在很大程度上,是一个产业链耦合问题,对中国的充电桩行业进一步的技术升级形成挑战与机遇。 最重要的是,广汽这一电池技术,本身对于石墨烯的需求并不特别大,加之最近3年多基础型石墨烯产品的售价大幅降低,所以仅就石墨烯而言,对于成本的制约并不突出。制约这项电池技术的主要成本以及难度,可能来自于电池设备及工艺。 以上,因循谨慎性原则,鉴于固态电池或许至少要在2025年才能商业化,广汽这一“掺杂石墨烯的硅基负极锂电池”如果能够在一年内量产,还是很有竞争力的。 03 可以谨慎乐观 我们之所以对广汽这一电池技术保持谨慎乐观,原因不止是在技术路径上存在差异化竞争窗口期,还在于它的相应自主核心技术确实拥有一定的技术优越性。 根据检索可知,广汽这一系列电池技术,研发已经铺陈4年以上。这从其相关发明专利申请时间可以回推——其核心专利申请至少可以追溯至2018年11月。 更重要的是,通过对其相关核心专利的观察可知,广汽这项电池技术并不是凭空出现,本身也是因循电池技术发展规律而来——主要的技术进步并不在于石墨烯或纳米硅等材料的引入,而是其“一核两壳”技术工艺。 所谓“一核两壳”工艺,具体来说是指其硅基复合负极材料结构,包括内核、第一壳层和第二壳层: ■内核包括硅碳复合材料(满足高克容量及高功率密度锂离子电池); ■第一壳层包括无定形碳层(用于提升导电性,约束内核的体积膨胀改善嵌锂的均匀性); ■第二壳层包括导电聚合物层(石墨烯所在之处,具有较好的韧性,充放电过程中避免无定形碳层开裂的现象,有利于形成稳定的固体电解质膜,进而提升材料的循环稳定性)。 实际上,目前阻碍硅系负极材料大规模产业化应用的核心技术难点,就在于当负极添加的硅系活性材料较多时,通常会因为约束性不够导致体积膨胀、碳层开裂,不足以形成稳定的固体电解质膜,使得电池经过超200次放电后性能迅速衰减至初始的70%以下。 而广汽这项“一核两壳”工艺,则在一定幅度上针对性的有效处置了这个问题(见下图)。 图4:广汽的“一核两壳”式硅基负极结构,可以有效对抗电池衰减。来源:专利文件 故而,至少从这项技术所测试并显示出的纸面技术指标上,我们可以对广汽“掺杂石墨烯的硅基负极锂电池”保持谨慎乐观。 04 广汽急什么? 本文最后,我们再来推测下,作为一家国企性质的整车公司,广汽为何会如此着急且高调地要在2021年元月,发布一项距离量产仍有较长时间(据官方称最晚将于今年四季度量产)的动力电池技术? 原因很可能来自竞品以及股价的压力: 实际上,上汽联合阿里此前发布得智己品牌汽车,同样号称将可实现1000公里NEDC续航。根据推测,该汽车电池涉及的技术路线同样是“硅基负极锂电池”。 广汽此番发声,很像是一种“主权示威”——我们的技术是基于自主研发的核心专利,竞品们或只能依赖宁德时代这样的电池厂商(当然,广汽的电池配套厂也是和宁德时代联合成立运营的)。 图5:广汽已联手宁德时代生产电池。来源:网络。 另外,作为中国老牌整车公司,过去一年多,新势力们各种“PPT技术”引发的股价狂飙,可能也为广汽提供了“参考样板”,既往通过对于技术的宣示,提振股价、做大市值——这本身也是一种政治正确与需求。 依据常识来说,相比于新势力们的造势,体制本身也决定了广汽集团不会也不敢完全脱离实际地向外界制造噱头。所以对于广汽此番的高调,我们相信背后还是有充分的现实准备的——而这,某种意义上也是我们对其“掺杂石墨烯的硅基负极锂电池”保持谨慎乐观的理由之一。 只不过无论如何,通过以上的揭示,我们可以基本确认广汽上周五对外发布的文案中关于“石墨烯电池”的说法确实是较为不准确的,存在误导市场之嫌。这也很大程度反映出当前电动车市场领域“虚火过剩”,很值得投资者警惕。 最后特别指出,本文涉及技术方面内容较多,难免谬误与疏漏。不足之处,敬请各位文后留言指出与讨论。
  • 《石墨烯/蓝宝石新型外延衬底的深紫外LED》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2019-05-19
    • 我国研究人员使用石墨烯(Gr)来改善纳米图案蓝宝石衬底(NPSS)上的氮化铝生长,作为氮化铝镓(AlGaN)深紫外(DUV)发光二极管(LED)的模板。从而开发出了石墨烯/蓝宝石新型外延衬底,并提出了等离子体预处理改性石墨烯,促进AlN薄膜生长实现深紫外LED的新策略。该团队由中国科学院半导体研究所照明研发中心与北京大学纳米化学研究中心、北京石墨烯研究院刘忠范团队组成。 石墨烯的存在改善了生长于表面的铝迁移率,通过准范德华外延(QvdWE)提高了晶体质量。反过来,这也改善了在AlN模板上生长的AlGaN LED的性能。 深紫外LED可以广泛应用于杀毒、消菌、印刷、通信和特殊照明等领域。纳米图案的蓝宝石衬底由400nm深的纳米凹锥图案组成,在蓝宝石表面上通过纳米压印光刻(NIL)产生1μm周期。通过1050℃无催化剂的APCVD生长大约0.7nm厚的石墨烯层。石墨烯生长过程需要三个小时。对石墨烯进行反应离子蚀刻以引入缺陷。NPSS上的石墨烯是在暴露于氮等离子体30秒之前制备的,然后加载到金属有机化学气相沉积(MOCVD)反应器中以进行AlN生长。 1200℃的AlN生长在氢载气中使用三甲基铝和氨前体。没有石墨烯中间层,在NPSS上生长两小时会导致粗糙、不均匀的AlN层。相比之下,石墨烯中间层使AlN快速聚结,形成连续的平坦表面。这表明石墨烯层增加了铝吸附原子的迁移率。