《可实现化学能到电能往复转换 钒电池担当“电力银行”》

  • 来源专题:可再生能源
  • 编译者: zhaowanyu
  • 发布时间:2017-09-04
  • 近年来,随着清洁能源发电的广泛应用,储能行业也获得了很大的发展。特别是以钒电池为代表的储能电站建设,为电网接纳可再生能源发电提供了良好的技术支持,促进了节能减排

    风能、太阳能等可再生能源的发展已是大势所趋,然而由于风能等清洁能源具有不连续、不稳定等特性,大规模并网后对电网调峰、调频及电能质量均会带来不利影响,这限制了清洁能源的广泛应用。储能技术则有望解决上述困扰。

    近年来,钒电池凭借其安全性高、寿命长、低污染等特性,成为可再生能源储能、电网调峰、备用电源等领域的首选技术之一。钒电池全称全钒液流电池,是一种通过钒离子价态变化,实现化学能到电能的往复转换,从而将风力或太阳能所产生力存储与释放的大型储能电池,业内形象地称之为“电力银行”。

    记者在采访中了解到,美国、日本等发达国家用于电站调峰和风力储能的钒电池产业发展迅速,技术已经基本成熟。然而,我国的钒电池产业还处于起步阶段。统计数据显示,我国钒储量占全球储量的35%,居全球第一位,钒产量占全球产量的48%。业内专家表示,得天独厚的钒资源优势为我国钒电池产业的发展创造了十分有利的条件。

    2012年,由融科储能公司建设的“5MW/10MWh全钒液流电池储能应用示范电站”在沈阳市龙源卧牛石风电场落成,并顺利通过了辽宁电网和业主的验收,各项指标均达到了设计要求。“这是目前世界上第一套实际并网运行超过4年的5MW级钒电池储能电站,标志着公司在该领域技术研发、成套产品生产等方面处于国际领先水平。”大连融科储能技术有限公司总裁助理王晓丽告诉《经济日报》记者,该储能电站直接接受辽宁省电力公司调度,参与电网削峰填谷,有效提高了电网对风力发电的接纳能力,推动可再生能源发电的健康发展,促进了节能减排。

    稳定运行4年多以来,该储能系统大大提高了风电场输出功率的可靠性。相较于常规发电机组,风电场发电具有较大的波动性和随机性,无法根据实际需求随时保障平稳供电。“例如,某天下午3点,电力公司要为A用户提供两小时50兆瓦功率的电力,如果当时风力不足就无法满足所需功率。”王晓丽说,储能系统实时吸收和释放功率,可以使风电场更加适应电力系统调度的运行需要,将其作为有效电源管理。此外,储能系统在平滑风电场出力、提高风电供电可靠性等方面也发挥着重要作用。

    中国科学院大连化学物理研究所研究员张华民表示,融科储能与中国科学院大连化学物理研究所通过产学研合作,已在全钒液流电池核心领域和关键技术攻关上实现了重大突破,相继在电池材料、成套装备系统、储能应用以及产业化制造等方面形成了完整的知识产权体系,拥有170余项国内外专利,是全钒液流电池国内及国际标准制定的牵头单位。

    目前,储能行业正处于从示范项目向大规模产业化跨越的关键时期。国际著名咨询机构麦肯锡更是将储能技术列为改变未来的12项颠覆性技术之一。根据国际能源机构(IEA)的预计,到2050年全球储能市场规模将达数万亿美元,我国储能行业也将坐拥数万亿元人民币的市场体量。作为当前储能设备的首选技术之一,钒电池具有十分强劲的发展潜力,甚至有可能改变未来的能源格局。

    按照我国《新能源汽车产业发展规划》和近年来电池行业数据的测算,钒电池所应用的风电储能设备和城市调峰储能设备市场规模将在16000亿元左右,绿色经济发展的浪潮将会给钒电池产业带来前所未有的历史机遇。

相关报告
  • 《自我可持续的质子陶瓷电化学电池使用三重导电电极的氢和电力生产》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-05-21
    • 质子陶瓷电化学电池(PCEC)是一种新兴的有吸引力的技术,它利用固体氧化物质子导体在中等温度下将能量转换为电能和氢气。为了实现高效的电化学制氢和稳定运行的发电,迫切需要高度坚固耐用的电极,以促进水氧化和氧还原反应,这是电解和燃料电池运行的关键步骤,尤其是在降低温度的情况下。在这项研究中,一个三进行氧化PrNi0.5Co0.5O3-δ钙钛矿开发作为氧电极,提供优越的电化学性能在400 ~ 600°C。更重要的是,在不添加任何氢气的情况下,将电解制得的氢气转化为电能,成功地证明了自持续可逆操作。通过氢渗透实验、显著的水合行为和计算结果证实,该催化剂具有良好的电催化活性。
  • 《燃料电池:信息化战场的“新能源”》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-02-26
    • 信息化条件下的高技术战争,士兵除携带武器弹药外,还将配备头盔显示器、激光测距仪、卫星定位终端以及高性能作战计算机等,这些设备每时每刻都需要充足的电量供应。美国陆军曾预测,未来单兵装备的平均耗电功率将达到100瓦,传统的干电池、蓄电池等早已“不堪重负”。 日前,在美国能源部耗资3400万美元资助的科技创新项目中,就包括4个与燃料电池高度相关的项目。连宝马等汽车公司都在跃跃欲试,将在2020年后正式发行搭载燃料电池的汽车。 燃料电池是一种直接把化学能转化为电能的装置,不仅不需要反复充电,还更加清洁高效。事实上,燃料电池正在成为军用电源领域的“明日之星”,将在未来战场发挥重要作用。 随身携带的“发电厂” 打赢未来信息化战争,需要高效可靠的“能量源”。近年来,信息化战场上竞相涌现的先进武器装备,对战场电力供应提出了新的更高要求。以美国为首的西方国家尤其重视燃料电池技术发展,从为单兵装备供电,到电推动军用卡车,更甚至是驱动无人航潜器和无人机,处处可见燃料电池的身影。 说起燃料电池中的“燃料”,当然不同于生活中常见的煤、油、天然气等传统燃料。我们都知道,让强大的电流从水中经过,水便会分解为氢和氧。燃料电池的原理正好与此过程相反,是通过特殊装置使氢和氧作为“燃料”发生反应,最终产生电能。因此,与干电池、蓄电池等储能装置在需要时才把储存的电能释放出来不同,燃料电池更像是一座把化学能直接转化成电能的“发电厂”。这也难怪燃料电池被认为是继水力发电、热能发电和原子能发电之后的第四种发电技术。 对于燃料电池而言,只要含有氢原子的物质就可以作为燃料。这就大大增加了“燃料”的来源范围,使燃料电池成为军用电源装备领域的“红人”。燃料电池投入军事应用,还有许多“先天性优势”。燃料电池在使用时能量转换效率高、系统反应快、运行可靠性强、维护方便。与其他电池相比,燃料电池的发电效率可以达到85%-90%。由于燃料电池的内部结构相对简单,工作时噪声很低,散热量和红外辐射较少。 近年来,包括美国国防部、美国陆军研究实验室、美国海军研究实验室等,都高度重视并全程参与了燃料电池的研发过程。从制订研制计划、明确技术指标,到研制后续环节安排部队进行试验,再到相关产品投入战场进行实战检验,燃料电池的研制都离不开美国军方的倾力支持。美国很多燃料电池产品的研发经历十几年时间,也与美国军方坚持将最新技术加以应用的决心不无关联。 “上天下海”无所不能 未来的燃料电池,将越来越轻型便携,并朝着移动式电池供电系统方向加速发展,必将成为信息化战场当之无愧的“能量源”。 燃料电池除可作为海面舰艇的辅助动力源外,还能为无人潜航器和潜艇提供驱动动力。美国海军已经完成了用作船用电网和推进系统的燃料电池系统研发,目前正逐步尝试将燃料电池用于驱逐舰。早在2005年,德国就试航了第一艘现代化的燃料电池潜艇。2016年获得澳大利亚海军潜艇项目大单的“梭鱼”级潜艇,也装备了由法国研制的燃料电池系统。2017年,美国国防部批准600万美元经费,专门用于研发无人潜航器的静音推进系统,或将采用由美国陆军研究实验室研制的燃料电池供电推进系统。此外,美国海军研究实验室还与通用汽车公司合作,正在致力于将车用燃料电池移植到下一代无人潜航器中,以大力提升无人潜航器的航程和持久力。 燃料电池也将助力飞行器展翅高飞。现有的无人机电池主要为锂离子电池,供电缺口较大,尤其需要研制供电时间更长、更安全可靠的供电系统。加拿大巴拉德公司为美军战术无人机研制了氢燃料电池,具有适应能力强、安全可靠、重量轻等特点,目前已经在洛克希德·马丁公司的系列产品中得到应用。美国国家航空航天局研制的使用燃料电池推进的太阳能无人机,一度创造出3.2万米的世界飞行高度纪录。目前,美国国防部正致力于使用燃料电池动力装置的长航时无人机项目,将尽快装备美军各军兵种。 早在20世纪60年代,由于载人航天器对特殊性能电池的迫切需求,美国曾研制出氢燃料电池。此后往返于太空和地球之间的“阿波罗”系列飞船,就专门安装这种体积小、容量大的供电系统。此外,美国通用汽车公司也在持续挖掘燃料电池在陆上军事应用中的潜力,已经推出使用氢燃料电池的“通用静音多功能电动平台”计划。该平台理论续航里程超过460千米,越野能力较强,还具备运送集装箱、作战方舱和医疗方舱等能力。 战场应用驶入“快车道” 随着战场军用电源系统要求的不断提升,燃料电池不仅为各类武器装备提供了强劲的供电能力、低热辐射和电磁辐射的使用环境,还具有高效、清洁、经济以及安全等优点,正逐步打开军事领域应用的大门。 现有的单兵可穿戴系统,士兵们背负的作战装备往往令人不堪重负。美国陆军目前正在尝试使用燃料电池取代传统锂离子电池,将减少约50%的负荷。美国陆军通信与电子研发和工程中心,同通用汽车公司合作,已经推出了一款用于单兵可穿戴设备的新型氢燃料电池系统。美军目前装备的军用燃料电池,尺寸与传统的一次性小型电池相同,输出的电流量却提高了1倍。韩国三星公司研发的单兵燃料电池系统,一次产生的电量高达1.8千瓦时,可满足士兵连续执行72小时任务需求。德国SFC公司研制的燃料电池系统,已经交付英国、挪威、比利时和荷兰等多国军队使用。 燃料电池系统的出现,对武器装备性能的提升也大有裨益。美军在燃料电池研发过程中遵循的“先易后难、先小后大”原则,不仅推动了燃料电池从单兵装备和野战携行电源,到无人机、无人潜航器以及作战车辆动力系统的升级,也在逐步积累技术和经验的过程中,为今后装备燃料电池武器装备性能的提升奠定了基础。野战条件下夜间作战时,对武器装备的隐蔽性要求极高,普通车辆发动机产生的热能会直接暴露于红外夜视仪中。对此,美国陆军与通用汽车公司联合研制出使用氢燃料电池驱动的轻型作战卡车,噪声水平明显降低,热能排放也非常少,极大地提高了战场生存能力。由于燃料电池反应后副产物是水,该型作战卡车还能为士兵进行战场供水。 目前,阻碍燃料电池实用化的主要问题,在于燃料电池的环境适用性、使用寿命和经济成本。近年来,尽管燃料电池的使用寿命有所提升,但绝大多数仅维持在2200小时左右,与实用化5000小时的目标寿命还有不小差距。同时,燃料电池的生产和使用成本比较高,人们试图通过使用廉价替代材料、改进制备工艺、加速批量化生产等方式,使燃料电池的军事应用走上“快车道”。