《世界上第一个用于300GHz波段的太赫兹无线通信的便携式无线电收发机》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2016-06-12
  • 日本电报电话公司(NTT;总部:千代田区,东京;总裁兼首席执行官:Hiroo Unoura)、富士通有限公司(富士通;总部:水门区,东京;总裁兼首席执行官:Tatsuya Tanaka),和国家信息通信技术研究所(NICT;总部:都小金井市,东京;主席:Masao Sakauchi)合作开发的世界上第一个用于300GHz波段的太赫兹无线通信的便携式无线电收发机,实验证明,通过正交分集复用,它能以40Gbit/s的速率传输数据。由于该收发机可以保证一个较宽的频带,所以它有望被应用于高速无线通信。此外,从目前的发展情况来看,在一个假定的使用情况下,大量的内容是从信息终端(如下载视频和音乐)下载的,在这样的信息终端安装了这种研发的收发机。而且根据实验内容下载的结果,使用一个小巧便携的(即智能手机大小)与收发机匹配的终端,就可以实现2Gbit/s的数据传输(即以3s的速度下载一个视频数据)。通过这个实验,结果表明,使用300GHz波段的太赫兹波的便携式收发机——以及伴生元素电路技术——就可以实现大容量传输。从现在开始,预计利用300GHz波段的太赫兹波的技术在将取得重大进展。这项研发的技术已经在IMS2016(2016 IEEE MTT-S国际微波研讨会)上有了详细的介绍。

相关报告
  • 《东京工业大学和富士通实现世界上最快的无线传输速率:56 Gbps —在CMOS集成电路中实现的毫米波段无线装置》

    • 来源专题:宽带移动通信
    • 编译者:高芳
    • 发布时间:2016-07-25
    • 2月1日,东京工业大学和富士通实验室有限公司宣布,为了进一步扩大无线设备的能力,他们已经开发出一种CMOS无线收发芯片,可以以很高速度和极小损失在72到100 GHz范围内传输信号。他们还开发了有关技术使之模块化。随着这些发展,他们成功地实现了世界上最快的无线传输速率——56 Gbps。 近年来,为了应对智能手机及其他设备的广泛使用而产生的数据流量大量增加,基站开始使用光纤网络链接。但是,这种方法的一个问题是很难在难以安装光纤电缆的地区进一步拓展服务,例如城区和被河流山脉所包围的地区。为了解决这一问题,东京工业大学和富士通实验室研发出使用毫米波段(30-300 GHz)的高速无线收发技术,这一波段的无线应用竞争小并能够实现大容量通信。 这项技术使得在光纤网络很难覆盖的室外安装大容量无线通信设备成为可能。 背景 随着智能手机普及带来的数据通信流量的大幅增加,核心网络到无线基站、无线基站到无线基站之间的主干网络的扩张能力正在加速。在过去,主要使用的是宏单元基站,每一个基站都可以覆盖几公里范围内的一个地区。但近年来,为适应通信流量的增加,在原有基站基础上还增加了大量覆盖范围只有几百米的小基站。 此外,目前处理基站间通信的最常用的方法是采用可传输大量数据的光纤电缆。但在密集的城区以及山河环绕的地区铺设新的光纤电缆是极为困难的。因此,能够轻松实现户外安装的大容量无线设备的研发一直备受期待。 问题 大容量无线传输需要使用广泛的频率范围。因为很少有形成竞争的无线应用程序使用到它,这使得毫米波段成为合适的选择。但由于毫米波段采用的频率很高,为此设计合适的CMOS集成电路一直是一个挑战。为了达到目的,CMOS电路的运转水平需要逼近其极限值。同时,开发高质低耗的调制解调毫米波宽带信号的收发器电路也是非常困难的。
  • 《中国科大在太赫兹波段主动调控材料和器件研究中取得系列进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-07-31
    •         中国科学技术大学教授陆亚林量子功能材料和先进光子技术研究团队在太赫兹主动调控器件研究方面取得系列进展。该团队研究了太赫兹波与超构材料、氧化物超晶格薄膜相互作用机制,并成功制备了超快的太赫兹调制器,率先实现了皮秒级的高调制深度的太赫兹超快开关;同时制备了多功能的太赫兹器件,在单一器件中实现电开关、光存储和超快调制多种功能。相关研究成果近期相继发表在国际学术期刊《先进光学材料》[Adv. Optical Mater.]和《光学快讯》[Opt. Express.]上。   太赫兹波具有独特的时域脉冲、低能、谱指纹、宽带等特性,它在物理化学、材料科学、生物医学、环境科学、安全检查、卫星通讯等领域有着广阔的应用前景。其中,影响太赫兹技术发展和应用的关键因素之一是难以获得主动太赫兹调控元器件。超构材料,一种由金属或介质材料的亚波长微结构阵列组成的人工材料,其奇异的电磁响应特性为太赫兹调控器件提供了绝佳的解决方案。遗憾的是,以往基于超构材料的太赫兹元器件均由金属材料构成,加工尺寸固定后,器件的功能在实际应用中便难以主动改变。因此,发展主动调控的太赫兹元器件有着重要的研究意义。   通常主动调控是对太赫兹波偏振、振幅、相位等进行调控,调控速度是另外一个指标。一些实际应用也迫切需求对太赫兹波进行超快调控。陆亚林团队设计并制作了基于硅介质的超快调控超表面。通过对硅薄膜进行离子注入和快速热处理工艺,大大减小了硅的载流子寿命并提高了自由载流子浓度。然后通过光刻、刻蚀工艺将硅薄膜加工为能在太赫兹波段共振的圆盘阵列结构的超表面。利用红外飞秒脉冲的激发,率先实现了皮秒级的高调制深度的太赫兹超快开关(开20ps,关300ps),并基于半导体载流子动力学建立理论模型对其进行了合理的解释。相关研究成果近日在《先进光学材料》期刊上线[Adv. Optical Mater. 2018, DOI:10.1002/adom.201800143]。   另外,当前研究的太赫兹主动调控器件功能比较单一,即只能在单一外场下实现单一的功能。但单一功能难以适应当今技术发展的要求。因此,在单一器件上,实现多物理场的调控,并实现对太赫兹波的多功能调控,是当前太赫兹技术的发展前沿之一,也是实际应用的现实需求。有鉴于此,该团队基于VO2的绝缘-金属相变,通过将VO2与金属非对称开口谐振环结合,设计了一种太赫兹波段的多功能可调谐复合超表面,并利用国家同步辐射实验室副研究员邹崇文提供的高质量VO2薄膜,通过刻蚀、光刻等工艺制备了器件。此复合超表面能够通过加热和施加电流的方式实现对透射太赫兹波的振幅调控,绝对调制深度高达54%,品质因数高达138%。基于VO2在相变过程中的回滞特性,该复合超表面可以通过电流触发实现室温下对太赫兹波的记忆存储功能。此外,利用超快强脉冲泵浦,此复合超表面还能实现对太赫兹波的超快调控。从而,在单一器件实现了对太赫兹波的多功能调控。相关研究成果近日在《先进光学材料》期刊上线[Adv. Optical Mater. 2018, DOI: 10.1002/adom.201800257]。   此外,很多材料在太赫兹波段的响应仍是未知的,而只有研究清楚了各类材料与太赫兹波相互作用的特性,设计主动太赫兹器件才能有迹可循。该团队利用自行搭建的两套太赫兹系统测量并分析了量子功能材料与太赫兹波的相互作用。重点研究了不同周期数的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫兹响应,发现了532 nm连续激光的泵浦对此超晶格在太赫兹波段的介电常数具有较大的调控作用,并通过Drude-Lorentz模型的拟合对此现象进行了微观机理的解释,这为寻找新的可用于太赫兹主动调控器件的功能材料开辟了新路径。相关研究成果发表在《光学快讯》[Opt. Express. 26, 7842 (2018)]上。   上述论文的第一作者为合肥微尺度物质科学国家实验中心博士研究生蔡宏磊,通讯作者为黄秋萍、陆亚林。该工作得到了科技部、国家自然科学基金委、中国科学院和教育部等关键项目的资助。