《MedRixv,2月11日,Tracking the spread of novel coronavirus (2019-nCoV) based on big data》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-02-12
  • Tracking the spread of novel coronavirus (2019-nCoV) based on big data

    Xumao Zhao, Xiang Liu, Xinhai Li

    doi: https://doi.org/10.1101/2020.02.07.20021196

    Abstract

    The novel coronavirus (2019-nCoV) appeared in Wuhan in late 2019 have infected 34,598 people, and killed 723 among them until 8th February 2020. The new virus has spread to at least 316 cities (until 1st February 2020) in China. We used the traffic flow data from Baidu Map, and number of air passengers who left Wuhan from 1st January to 26th January, to quantify the potential infectious people. We developed multiple linear models with local population and air passengers as predicted variables to explain the variance of confirmed cases in every city across China. We found the contribution of air passengers from Wuhan was decreasing gradually, but the effect of local population was increasing, indicating the trend of local transmission. However, the increase of local transmission is slow during the early stage of novel coronavirus, due to the super strict control measures carried out by government agents and communities.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.medrxiv.org/content/10.1101/2020.02.07.20021196v1
相关报告
  • 《MedRixv,2月11日,The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-12
    • The effect of travel restrictions on the spread of the 2019 novel coronavirus (2019-nCoV) outbreak Matteo Chinazzi, Jessica T. Davis, Marco Ajelli, Corrado Gioannini, Maria Litvinova, Stefano Merler, Ana Pastore y Piontti, Luca Rossi, Kaiyuan Sun, Cécile Viboud, Xinyue Xiong, Hongjie Yu, M. Elizabeth Halloran, Ira M. Longini Jr., Alessandro Vespignani doi: https://doi.org/10.1101/2020.02.09.20021261 Abstract Motivated by the rapid spread of a novel coronavirus (2019-nCoV) in Mainland China, we use a global metapopulation disease transmission model to project the impact of both domestic and international travel limitations on the national and international spread of the epidemic. The model is calibrated on the evidence of internationally imported cases before the implementation of the travel quarantine of Wuhan. By assuming a generation time of 7.5 days, the reproduction number is estimated to be 2.4 [90% CI 2.2-2.6]. The median estimate for number of cases before the travel ban implementation on January 23, 2020 is 58,956 [90% CI 40,759 - 87,471] in Wuhan and 3,491 [90% CI 1,924 - 7,360] in other locations in Mainland China. The model shows that as of January 23, most Chinese cities had already received a considerable number of infected cases, and the travel quarantine delays the overall epidemic progression by only 3 to 5 days. The travel quarantine has a more marked effect at the international scale, where we estimate the number of case importations to be reduced by 80% until the end of February. Modeling results also indicate that sustained 90% travel restrictions to and from Mainland China only modestly affect the epidemic trajectory unless combined with a 50% or higher reduction of transmission in the community. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《MedRixv,2月11日,The Novel Coronavirus, 2019-nCoV, is Highly Contagious and More Infectious Than Initially Estimated》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-12
    • The Novel Coronavirus, 2019-nCoV, is Highly Contagious and More Infectious Than Initially Estimated Steven Sanche, Yen Ting Lin, Chonggang Xu, Ethan Romero-Severson, Nick Hengartner, Ruian Ke doi: https://doi.org/10.1101/2020.02.07.20021154 Abstract The novel coronavirus (2019-nCoV) is a recently emerged human pathogen that has spread widely since January 2020. Initially, the basic reproductive number, R0, was estimated to be 2.2 to 2.7. Here we provide a new estimate of this quantity. We collected extensive individual case reports and estimated key epidemiology parameters, including the incubation period. Integrating these estimates and high-resolution real-time human travel and infection data with mathematical models, we estimated that the number of infected individuals during early epidemic double every 2.4 days, and the R0 value is likely to be between 4.7 and 6.6. We further show that quarantine and contact tracing of symptomatic individuals alone may not be effective and early, strong control measures are needed to stop transmission of the virus. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.