《算力网络运载力指数评估报告(2024年)》

  • 来源专题:新一代信息技术
  • 编译者: isticzz2022
  • 发布时间:2024-12-09
  •    报告详细分析了算力时代下的高品质联云入算、城市内算力互联、枢纽间算力互联以及网络智能化调度四大需求,总结了稳定大带宽、安全高可靠、确定低时延,以及智能化服务等全光网发展四大特征。提出算力时代的全光网目标架构和关键技术体系:一是通过全光DCA(数据中心接入),提供灵活高品质入算能力,以网促算;二是通过全光DCI(数据中心互联)实现数据中心高效互联,以网强算;三是通过光电融合DCN(数据中心网络)助力提高算力资源利用效率,以网补算;四是通过灵活一体调度的智能管控平台,使能算网高效敏捷调度。
相关报告
  • 《2024 年人工智能指数报告》

    • 来源专题:战略生物资源
    • 发布时间:2024-04-16
    • 2024年4月15日,由李飞飞联合领导的斯坦福大学以人为本人工智能研究所(Stanford HAI)发布了《2024 年人工智能指数报告》(Artificial Intelligence Index Report 2024)。这份长达 300 多页的报告是 Stanford HAI 发布的第 7 份 AI Index 研究,追踪了 2023 年全球人工智能的发展趋势。 Stanford HAI 官方介绍道,“这是我们迄今为止最全面的报告,而且是在人工智能对社会的影响从未如此明显的重要时刻发布的。” Stanford HAI 研究项目主任 Vanessa Parli 表示,“我认为最令人兴奋的人工智能研究优势是将这些大型语言模型与机器人或智能体(agent)相结合,这标志着机器人在现实世界中更有效地工作迈出了重要一步。” 新报告揭示了 2023 年人工智能行业的 10 大主要趋势: 1.人工智能在某些任务上胜过人类,但并非在所有任务上。  人工智能已在多项基准测试中超越人类,包括在图像分类、视觉推理和英语理解方面。然而,它在竞赛级数学、视觉常识推理和规划等更复杂的任务上依然落后于人类。 2.产业界继续主导人工智能前沿研究。 2023 年,产业界产生了 51 个著名的机器学习模型,而学术界只贡献了 15 个。2023 年,产学合作还产生了 21 个著名模型,创下新高。此外,108 个新发布的基础模型来自工业界,28 个来自学术界。 3.前沿模型变得更加昂贵。  根据 AI Index 的估算,最先进的人工智能模型的训练成本已经达到了前所未有的水平。例如,OpenAI 的 GPT-4 估计使用了价值 7800 万美元的计算资源进行训练,而谷歌的 Gemini Ultra 的计算成本则高达 1.91 亿美元。相比之下,几年前发布的一些最先进的模型,即原始 transformer 模型(2017 年)和 RoBERTa Large(2019 年),训练成本分别约为 900 美元和 16 万美元。 4.美国成为顶级人工智能模型的主要来源国。 2023 年,61 个著名的人工智能模型源自美国的机构,超过欧盟的 21 个和中国的 15 个。美国也仍然是人工智能投资的首选之地。2023 年,美国在人工智能领域的私人投资总额为 672 亿美元,是中国的近 9 倍。 然而,中国依然是美国最大的竞争对手,中国的机器人安装量居世界首位;同样,世界上大多数人工智能专利(61%)都来自中国。 5.严重缺乏对 LLM 责任的可靠和标准化评估。  AI Index 的最新研究显示,负责任的人工智能严重缺乏标准化。包括 OpenAI、谷歌和 Anthropic 在内的领先开发商主要根据不同的负责任人工智能基准测试他们的模型。这种做法使系统地比较顶级人工智能模型的风险和局限性的工作变得更加复杂。 6.生成式人工智能投资激增。 尽管去年人工智能私人投资整体下降,但对生成式人工智能的投资激增,比 2022 年(约 30 亿美元)增长了近八倍,达到 252 亿美元。生成式人工智能领域的主要参与者,包括 OpenAI、Anthropic、Hugging Face 和 Inflection,都获得了一轮可观的融资。 7.数据显示,人工智能让打工人更有生产力,工作质量更高。 2023 年,多项研究评估了人工智能对劳动力的影响,表明人工智能可以让打工人更快地完成任务,并提高他们的产出质量。这些研究还表明,人工智能有可能缩小低技能和高技能工人之间的技能差距。还有一些研究警告说,在没有适当监督的情况下使用人工智能可能会起到负面作用。 8.得益于人工智能,科学进步进一步加速。 2022 年,人工智能开始推动科学发现。然而,2023 年,与科学相关的更重要的人工智能应用启动——使算法排序更高效的 AlphaDev、促进材料发现过程的 GNoME、可在一分钟内提供极其准确的 10 天天气预报的 GraphCast、成功对 7100 万种可能的错义突变中的约 89% 进行分类的 AlphaMissence。如今,人工智能现在可以完成人类难以完成的、但对解决一些最复杂的科学问题至关重要的粗暴计算。在医疗方面,新的研究表明,医生可以利用人工智能更好地诊断乳腺癌、解读X射线和检测致命的癌症。 9.美国的人工智能法规数量急剧增加。 2023 年,全球立法程序中有 2175 次提及人工智能,几乎是上一年的两倍。美国人工智能相关法规的数量在过去一年大幅增加。2023 年,与人工智能相关的法规有 25 项,而 2016 年只有 1 项。仅去年一年,人工智能相关法规的总数就增长了 56.3%。其中一些法规包括生成式人工智能材料的版权指南和网络安全风险管理框架。 10.人们对人工智能的潜在影响有了更深刻的认识,同时也更焦虑。 来自市场研究公司 Ipsos 的一项调查显示,在过去一年中,认为人工智能将在未来 3-5 年内极大地影响他们生活的人,比例从 60%上升到 66%。此外,52% 的人对人工智能产品和服务表示焦虑,比 2022 年上升了 13 个百分点。 在美国,来自皮尤研究中心(Pew)的数据显示,52% 的美国人表示对人工智能的担忧多于兴奋,这一比例比 2022 年的 38% 有所上升。
  • 《算力时代全光运力应用研究报告(2024年)》

    • 来源专题:新一代信息技术
    • 编译者:isticzz2022
    • 发布时间:2024-12-09
    •     报告立足算网融合时代下产业数字化转型升级背景,围绕智慧交通、工业仿真、数字文旅、智慧家庭等典型行业入云场景,以及分布式大模型训练场景等,深入剖析用户服务体验以及数据传输等对网络的需求,提出满足企业及用户品质联算需求的超大带宽、确定性、高可靠安全、业务感知、算网协同等全光运力关键技术,展示全光运力在智慧交通、智家云电脑、智算拉远等场景下的行业创新应用案例。