《浙江大学Science:具有纳米尺度图灵结构的聚酰胺膜用于净水》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-05-17
  • 早在1952年,图灵就提出两种不同化学物质,活性剂和抑制剂,能够在特定条件下进行反应和扩散得到复杂图案。因此,图灵结构的产生需要在反应-扩散体系中。界面聚合就是一种在非热力学平衡状态下的反应-扩散过程,然而常规界面聚合依然无法得到图灵结构,原因在于活性剂和抑制剂扩散系数之间的差异还不够大。

    成果简介

    近日,浙江大学张林教授课题组尝试在水相中加入一定量的聚乙烯醇,由于聚乙烯醇和活性剂之间的氢键作用增加溶液粘度,降低了活性剂的扩散速率,从而使得活性剂与抑制之间的扩散系数差异满足图灵结构的产生条件。该文中报道了两种不同的图灵结构,并且研究表明其具有良好的透水性和盐选择性,在水净化方面具有重要的应用价值。该成果以题为"Polyamide membranes with nanoscale Turing structures for water purification"发表在Science上。

    本文证实在界面聚合反应这一反应-扩散体系中,通过调节合适的初始反应条件可以得到图灵结构。微观结构表明高透水性位点的空间分布与纳米尺度的图灵结构相对应。这些具有图灵结构的膜在透水性和水盐选择性方面具有出色的传输性能,能够在未来的水净化处理方面发挥重要作用。

    文献链接:Polyamide membranes with nanoscale Turing structures for water purification (Science, 2018, DOI: 10.1126/science.aar6308)

相关报告
  • 《哈工大,重磅Science!聚酰胺纳滤膜的冰约束合成》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 【导读】 近年来,基于膜的分离工艺在高能效、低碳排放和高设计灵活性的应用上展现出得天独厚的应用潜力,已经成为缓解全球水资源短缺、环境修复和资源回收的有效策略。在这其中,纳滤(NF)作为一种经济高效的膜分离工艺,在去除小分子和多价离子比其他处理技术更具有优势。更加重要的一点是,在水软化和净化过程中也展现出更多的可能性。在膜的研究过程中,通过界面聚合(IP)制备的聚酰胺(PA)膜是标准的NF膜,其具有的纳米结构和电离行为在决定膜性能方面发挥着至关重要的作用!但值得关注的是,现有的PA膜合成方案以控制扩散主导的液相反应为基础,这些液相反反应会产生低于标准的空间结构和电离行为。同时,还要考虑有机胺和酰氯之间的缩聚反应速率比聚合期间胺在有机相溶液中的扩散速率快几个数量级,因此具有传统的扩散优势的聚合很难实现理想的PA NF膜结构。虽然近些年来已经提出了众多的结构设计和分子工程策略,研究人员试图控制有机相和浸泡的间苯二胺(MPD)底物的温度,但空间调控明显不足,最终使得膜交联或生长抑制严重不足,探究一种切实可行的膜制备工艺已经成为进一步推进PA膜应用的关键! 【成果掠影】 在此,哈尔滨工业大学邵路教授(通讯作者)等人报道了一种冰约束界面聚合策略,以实现界面反应的有效动力学控制和六方多型(Ih)含单体的冰相,合理合成三维准层PA膜进行纳滤。同时,实验和分子模拟证实了潜在的膜形成机制,本文冰约束PA纳滤膜具有高密度电离结构和卓越的传输通道,实现了卓越的透水和出色的离子选择性。 值得注意的是,冰约束时间也是调整MPD-ice成核和结晶的一个重要参数,它可能会破坏MPD从冰中的分布和释放。冷冻8小时后得到Ih冰晶,得到3D准层结构。较短的冷冻时间(0.5小时和2小时)不足以使MPD-ice结晶成冰。此外,较长的冻结时间(12小时)导致MPD溶质分离部分沉淀和积累MPD分子,导致了不理想的孔隙结构。此外,由于有机溶剂在低温下的高粘度和高表面张力,MPD的溶解减少,导致PA膜表面形成缺陷。 相关研究成果2023年10月12日以“Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes”为题发表在Science上。 【核心创新点】 1.本文提出了一种冰约束界面聚合策略,以实现界面反应的有效动力学控制和六方多型(Ih)含单体的冰相,合理合成三维准层PA膜进行纳滤; 2.实验和分子模拟证实了潜在的膜形成机制,本文冰约束PA纳滤膜具有高密度电离结构和卓越的传输通道,实现了卓越的透水和出色的离子选择性。 【成果启示】 综上所述,作者创新性地报道了一种IC-IP策略用于设计和开发PA NF膜的空间结构和电离行为。其中,得益于IC-IP过程中冰融化所特有的反应动力学和热力学,其最终的协同作用实现了PA NF膜的空间结构和电离行为的材料设计,并且形成的3D准分层结构结合了高透水性和离子筛分性能。因此,凭借本文所提出的策略,通用的“冰约束”合成方法可以有助于当前用于合成膜和各种先进材料。 文献链接:“Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes”(Science,2023,10.1126/science.adi9531)
  • 《设计纳米尺度的生物运动》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-05-22
    • 已经创建了合成蛋白质,其以可预测和可调节的方式响应其环境而移动。这些运动分子是在计算机上从零开始设计的,然后在活细胞内产生。 为了发挥作用,天然蛋白质通常以精确的方式改变其形状。例如,血液蛋白血红蛋白必须在结合并释放氧分子时弯曲。然而,通过设计实现类似的分子运动一直是一个长期的挑战。 5月17日的“科学”杂志报道了成功设计出响应pH变化而改变形状的分子。 (pH值是从碱性到酸性的化学规模。) 华盛顿大学医学院蛋白质设计研究所领导了多机构研究。 研究人员着手创造合成蛋白质,在中性pH值下自组装成设计配置,并在酸存在下快速拆解。 结果显示,这些动态蛋白质按预期移动,可以使用其pH依赖性运动来破坏脂质膜,包括内体上的脂质膜,这是细胞内的重要区域。 这种膜破坏能力可用于改善药物作用。递送至细胞的大量药物分子通常滞留在内体中。坚持到那里,他们无法实现他们预期的治疗效果。 内体的酸度不同于细胞的其他部分。该pH差异作为触发设计分子运动的信号,从而使它们能够破坏内体膜。 “能够以可预测的方式设计合成蛋白质的能力将推动新的分子药物浪潮,”资深作者,大学医学院生物化学教授,蛋白质设计研究所所长David Baker说。 “因为这些分子可以使内体透化,所以它们作为药物输送的新工具具有很大的前景。” 长期以来,科学家一直试图设计内体逃逸。 “破坏细胞膜可能是有毒的,因此重要的是这些蛋白质只有在合适的条件下才会在适当的时间内激活,一旦它们进入内体,”最近贝克实验室的博士后研究员斯科特博肯说。最近的项目。 Boyken通过添加一种叫做组氨酸的化学物质,在他的设计蛋白质中实现了分子运动。在中性(既不是碱性也不是酸性)条件下,组氨酸不带电荷。在少量酸的存在下,它会吸收正电荷。这阻止它参与某些化学相互作用。组氨酸的这种化学性质使得团队能够制造在酸存在下分解的蛋白质组装。 “设计具有活动部件的新蛋白质一直是我博士后工作的长期目标。因为我们从头开始设计这些蛋白质,我们能够控制组氨酸的确切数量和位置,”博肯说。 “这让我们可以调节蛋白质在不同的酸度下分解。” 来自威斯康星大学,俄亥俄州立大学,劳伦斯伯克利国家实验室和霍华德休斯医学研究所的Janelia研究园区的其他科学家为这项研究做出了贡献。 那些在OSU的Vicki Wysocki小组中使用天然质谱法来确定导致蛋白质分解所需的酸量。他们证实了设计假设,即在蛋白质之间的界面处含有更多的组氨酸会导致组件突然崩溃。 威斯康星大学药学院Kelly Lee实验室的合作者表示,设计蛋白质以pH依赖性方式破坏人工膜,这反映了天然膜融合蛋白的行为。 在HHMI的Janelia研究园区的Jennifer Lippincott-Schwartz实验室进行的后续实验表明,这些蛋白质也破坏了哺乳动物细胞中的内体膜。 可以逃避内体的重新设计的病毒是最常用的药物递送载体,但病毒具有局限性和缺点。 研究人员认为,仅由设计蛋白质制成的药物传递系统可以与病毒传递的效率相媲美而没有固有的缺点。 ——文章发布于2019年5月16日