《澳大利亚科学家开发出一种可破坏细菌耐药性的新药》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2018-12-26
  • 澳大利亚昆士兰大学领导的一项新研究发现,一种原本为阿尔茨海默病研发的药物可以破坏细菌对抗生素的耐药性,为解决细菌耐药性这一日益严峻的公共卫生问题提供了新思路。

    细菌耐药性问题已经成为全球公共卫生领域最大威胁之一。据世界卫生组织估算,这一问题如果得不到妥善解决,到2050年每年将导致全球约1000万人死亡。耐药性可分为固有耐药(intrinsic resistance)和获得性耐药(acquired resistance)。固有耐药性又称天然耐药性,是由细菌染色体基因决定、代代相传,不会改变的,如链球菌对氨基糖苷类抗生素天然耐药;肠道G-杆菌对青霉素天然耐药;铜绿假单胞菌对多数抗生素均不敏感。获得性耐药性是由于细菌与抗生素接触后,由质粒介导,通过改变自身的代谢途径,使其不被抗生素杀灭。

    昆士兰大学研究人员领导的团队开发出一种名为PBT2的药物,它原本被设计用于治疗阿尔茨海默病和亨廷顿舞蹈病等神经退行性疾病。此前有研究认为,这些神经退行性疾病与脑部重金属含量升高有关。PBT2的功能是扰乱人体细胞和体内金属物质的相互作用,从而降低患者脑部重金属水平。目前该药已通过一期和二期临床试验,但还没获批上市。

    领导这项研究的昆士兰大学教授马克·沃克说,他们发现PBT2还能破坏细菌对抗生素的耐药性,因为改变机体内的金属含量后,细菌的生理活动也受到影响,原本有耐药性的细菌重新变得对抗生素敏感。对一大批有耐药性细菌的实验证实了这一点。

    沃克说,PBT2可以使那些对细菌失效的抗生素重新变得有效,“改变PBT2用途、将其用作‘耐药性破坏者’将是对抗细菌耐药性的一种新策略”。

    相关成果已经发表在美国网络学术期刊《微生物学》上。

相关报告
  • 《科学家开发出新型高敏感性的耐药性快速检测技术》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-03-06
    • 近日,一项刊登在国际杂志BMC Infectious Diseases上的研究报告中,来自美国大学的科学家们通过研究开发出了一种新型高敏感性的快速检测技术,其能帮助检测细菌是否携带有对常见两种抗生素耐药性的基因,这两种抗生素能用来治疗链球菌性喉炎和其它呼吸道疾病。这种新技术与基于培养的方法一样准确,但却能在几分钟内得出结果,而并非是几个小时或几天。 这种新型的快速检测技术能帮助确定一个人是否被携带有大环内酯外排基因A或met(A)的细菌所感染,met(A)能 促进细菌对红霉素和阿奇霉素产生耐药性,阿奇霉素最常用于治疗链球菌性喉炎,其也是在美国最常使用的一种抗生素。研究者John R. Bracht教授说道,这种检测技术能在运行10分钟内检测到靶基因,而标准的抗生素检测试验则只要需要过夜培养,而且通常并不会在常规诊断工作中进行,临床医生通常会根据以往的经验和建议来猜测首先给患者使用哪种抗生素,若治疗失败的话就需要重新调整用药了。 这项研究中,研究人员简化了检测抗生素耐药性的过程以便临床医生能够确定患者是否对处方药物会产生抗性,这种新型检测技术的开发有望改变研究人员治疗常见疾病的思路。医学界普遍认为,人们会对阿奇霉素和红霉素产生广泛的耐药性,但尽管如此,这些抗生素依然被用来治疗链球菌性喉炎和其它呼吸道疾病。研究人员所开发的快速诊断技术能够帮助研究者更好地选择药物,并改善现场诊断,从而在不给患者开具无用抗生素的情况下有效改善患者的最后治疗结局。 据美国CDC数据显示,如今耐药性细菌的出现以及增加是美国乃至全球人群所面临的一个严重问题,在美国,每年会有超过200万人被耐药性细菌所感染,而且至少有2.3万人死于耐药性的细菌感染;因此,追踪细菌的抗生素耐药性对于研究人员而言是一大挑战,本文中,研究人员所开发的新型快速检测技术就能够帮助快速追踪细菌的抗生素耐药性,同时其还能帮助监测细菌对抗生素耐药性的流行情况,下一步研究人员将会向FDA提交申请以批准这项检测技术在临床中被广泛使用。
  • 《澳大利亚科学家开发出可再生电力高效制氨》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-12-08
    • 澳大利亚科学家开发出利用可再生电力生产氨的新技术,这可能导致使用化石燃料生产氨的技术过时。这一发现由墨尔本莫纳什大学的科学家们完成,并在著名的《科学》杂志上发表了论文,详细介绍了这一发现。该研究团队包括化学教授道格·麦克法兰(Doug MacFarlane)及其合作者亚历山大·西蒙诺夫(Alexandr Simonov)博士和布莱恩·苏里亚诺(Bryan Suryanto)博士。 目前,大多数氨的生产都是采用哈伯-博世(Haber-Bosch)工艺完成的——该工艺由德国科学家于1909年和1910年开发,后来他们的工作获得了诺贝尔奖。这一工艺通常使用化石燃料作为氢的来源,氢与氮结合生成氨。这项技术约占全球温室气体排放量的1.8%。 新的氨生产技术涉及从水中提取氢气的电解过程,这一过程由电力驱动,可以利用风能和太阳能供应。科学家的研究论文说:“一种电化学合成氨的方法可以大大降低与当前热哈伯-博世过程相关的温室气体排放。”研究人员说,以前通过电解过程生产氨的尝试依赖于使用乙醇作为化学反应的一部分,而乙醇往往会降解。研究小组发现,用膦盐代替乙醇可以发生化学反应,盐被证明能抵抗同样的降解。 这一发现为利用绿色电力大规模高效生产氨创造了机会,取代了天然气作为原料的需求。氨已被确定为零排放燃料的一个关键选择,可以使用零排放氢气供应生产,通常比氢气更易于运输和储存。氨已经被普遍用作肥料,这意味着全球供应链、运输系统和存储基础设施已经存在。除了用作肥料外,氨本身还可以直接用作燃料或氢气的储存介质,氢气可在以后提取用于运输、能源储存或作为工业热源。 这可能是一个重大的发展,因为澳大利亚许多大的项目,如CWP Global和铁矿石亿万富翁安德鲁·福雷斯特(Andrew Forrest)提出的项目,都同样关注绿色氨和绿色氢,有潜力成为清洁的航运燃料。