《述评 | mRNA疫苗:光环背后不为人知的历史》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-12-04
  • 在新冠疫情推动mRNA疫苗取得重大突破前,数百位科学家已经默默耕耘了几十年。1987年底,Robert Malone做了一个载入史册的实验。他用信使RNA(messenger RNA,mRNA)链和脂滴做了一道“分子乱炖”,这道基因乱炖里的人体细胞吸收了mRNA,并开始用其合成蛋白[1]。

    Malone当时是美国加州索尔克生物研究所的研究生,他知道眼前的这一切会对医学产生深远影响,于是做了些笔记,并签上了名字和日期。他在1988年1月11日的笔记上写道,如果细胞能用被递送到其内部的mRNA合成蛋白,“RNA就能成为一种药物”。索尔克实验室的另一名成员也在笔记上签了名,以备后用。那年末,Malone用实验证明了青蛙胚胎也能吸收这些mRNA[2]。这是第一次有人用脂滴帮助mRNA顺利进入一种活生物。在这些实验的基础上,诞生了历史上最重要也最赚钱的疫苗:已在全世界接种数亿剂的新冠mRNA疫苗(参见:快如闪电!新冠疫苗的研发速度是如何实现的?)。仅2021年一年,其全球销量就能达到500亿美元。当然,成功的道路并非一帆风顺。Malone的实验离不开前人的工作,而在Malone实验之后的很多年里,mRNA被认为作为药物或疫苗都太不稳定,而且太贵。数十家研究实验室和公司尝试了这个想法,但都无法找到脂质与核酸的完美配比——核酸是mRNA疫苗的基本成分。

    今天mRNA疫苗使用的很多新技术都是在Malone研究时期的多年后发明出来的,包括经过化学修饰的RNA和帮助这些RNA进入细胞的不同脂滴类型(见“新冠mRNA疫苗的内部”)。不过,自诩“mRNA疫苗发明者”的Malone依然认为自己的贡献被忽略了。他对《自然》表示,“历史把我遗忘了。”一向只颁给少数几位科学家的权威奖项难免会漏掉mRNA医学发展史上的诸多贡献者。其实,mRNA疫苗的成功离不开数百位研究人员在30多年里的辛勤付出。这也反映出科学发现是如何一步步成为改变人类生活的重大突破:几十年看不到曙光、各种拒绝、对潜在利益的你争我夺;当然也有源源不断的好奇心和面对质疑初心不改的豪情。“这是很长的一串脚印。你永远不知道哪些东西将来会大派用场。”美国亚利桑那州大学发育生物学家Paul Krieg说。Krieg在80年代中期也做出了自己的贡献。

    mRNA的缘起

    Malone的实验想法绝非凭空而来。早在1978年,就有科学家用名为脂质体的脂质膜结构将mRNA转运到小鼠[3]和人类[4]细胞内诱导蛋白质表达。这种脂质体能包裹并保护mRNA,之后与细胞膜融合,将这种遗传物质送入细胞。这些实验建立在对脂质体和mRNA的多年研究之上;脂质体和mRNA都是在60年代发现的(见“mRNA疫苗的历史”)。但在当时,研究人员还没有把mRNA当作医疗产品看待,尤其是在实验室合成这种遗传物质的方式还没出现的情况下。他们其实希望用mRNA来研究基础的分子过程。大部分研究人员只能想办法使用来自兔子血细胞、培养的小鼠细胞或一些其他动物来源的mRNA。

    事情在1984年出现了转机。当时,Krieg和哈佛大学发育生物学家Douglas Melton以及分子生物学家Tom Maniatis和Michael Green领导的一个团队合作,他们利用一种RNA合成酶(取自一种病毒)和其他工具在实验室得到了具有生物活性的mRNA[5]——这项技术的核心沿用至今。之后,Krieg将实验室合成的mRNA注射到青蛙卵子中,证明它和真的没两样[6]。Melton和Krieg说,他们主要把合成mRNA当作研究基因功能和活性的工具。1987年,就在Melton发现这种合成mRNA能激活或抑制蛋白产生之后,他参与创立了一家名为Oligogen的公司[后更名为吉利德科学公司(Gilead Sciences),总部在加州福斯特城],专门研究合成RNA抑制目标基因表达的方法,寻找治病的可能。但在他的实验室或合作者中,没有人想到疫苗。

    “众所周知,RNA极不稳定,”Krieg说,“关于RNA的一切都要非常小心。”这或许解释了哈佛大学的技术研发部为何不给该团队的RNA合成技术申报专利。于是,该团队只能把他们的试剂让给威斯康星州麦迪逊的一家实验用品公司Promega Corporation,这家公司专为研究人员提供RNA合成工具。作为回报,团队得到了一笔不多不少的专利使用费和一箱凯歌香槟。

    专利之争

    多年后,Malone在自己的实验中使用了哈佛团队合成mRNA的方法。但他添加了一种新的脂质体,这种脂质体带一个正电荷,能增强它与mRNA带负电的骨架的结合。这种脂质体由生物化学家Philip Felgner开发,他现在是加州大学欧文分校疫苗研发中心的主任。虽然Malone成功用这种脂质体将mRNA送入了人体细胞和青蛙胚胎,但他从来没有拿到过博士学位。1989年,Malone因为和索尔克研究所的导师、基因疗法研究员Inder Verma不咬弦,提前结束了研究生学习,来到加州的初创公司Vical替Felgner工作。在那里,他们与威斯康星大学麦迪逊分校的合作者证明了这种脂质-mRNA复合物可以促进小鼠体内的蛋白产生[7]。

    事情从这里开始变得复杂了。Vical公司(联合威斯康星大学)和索尔克研究所都在1989年3月开始提交专利申请。但索尔克研究所很快放弃了申请,Verma则在1990年加入了Vical公司的顾问委员会。Malone称他的前导师Verma和Vical公司达成了一桩幕后交易,使得相关知识产权最后归Vical所有。Malone等人被列为发明人,但他本人不能从之后的许可协议中获利,而他本来可以从索尔克授权的专利中获利。Malone的结论是:“他们利用我的想法发了财。”Verma和Felgner断然否认了Malone的指控。“这简直就是无稽之谈。”Verma告诉《自然》,撤回专利申请是索尔克研究所技术转移处的决定。(由于被指控性骚扰,Verma在2018年从索尔克辞职,但他至今仍否认这些指控。)

    Malone在1989年8月离开了Vical公司,理由是他与Felgner在 “科学判断上”以及在“对他本人的知识产权贡献上”存在分歧。他从医学院毕业后接受了一年的临床培训,后来进入了学术界,打算继续研究mRNA疫苗,但一直拿不到经费。(1996年,他向加州的一个州立研究机构申请研究经费,用于研究预防季节性冠状病毒感染的mRNA疫苗,但申请失败。)Malone只能转而研究DNA疫苗和递送技术。2001年,他转型从事商务和咨询工作。过去几个月里,他开始公开质疑以他早前研究为基础的mRNA疫苗的安全性。Malone说,疫苗产生的蛋白会损害人体细胞,而且疫苗的风险超过它对儿童和年轻人的益处——这种观点受到其他科学家和卫生专家的一再反驳。

    生产难点

    1991年,Vical 公司与大型疫苗生产商美国默克集团(Merck)达成了一项数百万美元的研究合作和许可协议。默克集团的科研人员用小鼠测试了这一mRNA技术,试图发明一款流感疫苗,但后来又放弃了。“生产成本和可行性迫使我们喊停。”前默克研究人员、如今为各大公司提供疫苗研发咨询的Jeffery Ulmer说。

    法国斯特拉斯堡有一家小型生物技术公司,名为Transgène,那里的研究人员也有同样的感受。1993年,Pierre Meulien在该公司领导的一个团队与产业界和学术界合作,首次证明了包在脂质体中的mRNA能在小鼠体内诱导出一种特异性的抗病毒免疫应答[8]。[另一个激动人心的进展出现在1992年,当时美国斯克里普斯研究所(Scripps Research Institute)的科学家用mRNA技术取代了大鼠体内缺少的一种蛋白,用来治疗代谢疾病[9]。但独立实验室又花了20年的时间才取得了类似的成功。]

    Transgène公司的研究人员为他们的发明申请了专利,并继续研究mRNA疫苗。Meulien当时估计他至少需要1亿欧元(约1.19亿美元)来优化整个平台,但他说自己没打算为这个“高风险”的项目向他的老板要这么多钱。Meulien现在已经是Innovative Medicines Initiative的主管,这是一家位于布鲁塞尔的公私合营企业。由于Transgène的母公司决定不再续费,这个专利便失效了。

    Meulien的团队和默克的团队一样,后来都去研究DNA疫苗和其他基于载体的递送系统了。DNA疫苗平台最终获得了一些兽医上的应用许可,比如用来预防养鱼场出现感染。就在上个月,印度的监管当局批准了全球首个供人类使用的新冠DNA疫苗(参见:印度将推出全球首个新冠DNA疫苗)。但是,DNA疫苗在人体上的进展一直很慢,个中原因迄今仍未得到完全理解。Ulmer认为,产业界在DNA技术上的发力也带动了RNA疫苗的进展,无论是生产和监管环节,还是序列设计和分子机制,“我们从DNA上学到的很多东西都可以直接用于RNA,”他说,“这为RNA的成功奠定了基础。”

    持续挣扎

    从1990年代到2000年代的大部分时期里,几乎每个想做mRNA的疫苗公司都把目光投向了别处。传统观点总是觉得mRNA太容易降解,生产成本太高。瑞典卡罗林斯卡医学院病毒学家Peter Liljestr?m说:“这是一场持续的挣扎。”Liljestr?m在30年前开创了一种“自扩增”的RNA疫苗。Matt Winkler说:“RNA用起来实在太难了。”Winkler于1989年在美国成立了最早专注于RNA的实验用品公司之一Ambion。“如果你当时问我是不是可以把RNA作为疫苗打到人体内,我肯定会当着你的面大笑。”

    mRNA疫苗的概念在肿瘤界倒是颇受欢迎,但研究人员主要想用它来治疗疾病,而不是预防疾病。从基因治疗师David Curiel的工作开始,许多学术人员和初创公司都在研究mRNA是否能用来对付癌症。这里的思路是:如果mRNA能编码癌细胞表达的蛋白,那么把mRNA注射到体内就可以训练免疫系统去攻击这些细胞。目前就职于华盛顿大学医学院的Curiel在小鼠上成功了几次[10]。但是当他向Ambion公司阐述其中的商业机遇时,公司告诉他:“我们看不到这个技术的任何经济潜力。”相比之下,另一位癌症免疫学家取得了更多成功——1997年,全球第一家mRNA治疗公司由此诞生。Eli Gilboa的建议是从血液中获得免疫细胞,“唆使”它们吸收编码肿瘤蛋白的合成mRNA,再将这些细胞注射到体内,调动免疫系统攻击潜伏的肿瘤。

    Gilboa和他在美国杜克大学医学院的同事在小鼠中演示了以上过程[11]。到90年代末,学术合作者已经启动了人体试验,Gilboa的商业衍生公司Merix Bioscience(后更名为Argos Therapeutics,现名为CoImmune)很快开展了自己的临床研究。整个技术看上去很有前景,但几年后,一个已经进入后期的候选疫苗在一次大规模试验中失败了,这类技术现在几乎已经很少有人关注。

    虽然如此,Gilboa的工作还是产生了很重要的影响——这些工作让CureVac和BioNTech的创始人决定投身mRNA的研究——这两家德国公司现在已是全球领先的mRNA企业。CureVac的Ingmar Hoerr和BioNTech的U?ur ?ahin告诉《自然》,在了解到Gilboa的工作后,他们也想做此尝试,但是是通过把mRNA直接注射到体内的方式。“出现了雪球效应。”目前在迈阿密大学米勒医学院任职的Gilboa说。

    创业加速器

    Hoerr是第一个取得成功的。2000年,还在德国图宾根大学的他报道了直接注射也许能诱导小鼠体内的免疫应答[12]。他在那年创立了CureVac(也位于图宾根),但感兴趣的研究人员或投资人很少。Hoerr在一场学术会议上报告了一些早期小鼠数据,他说,“当时第一排的一位诺贝尔奖得主站起来说,‘你这些都是胡说八道,全是胡扯’。”(Hoerr拒绝透露这位诺贝尔奖得主是谁。)但慢慢地,资金开始源源不断地涌入,不到几年就开始了人体实验。该公司当时的首席科学官Steve Pascolo成了第一个实验对象:他给自己注射[13]了mRNA,现在腿部还有一个火柴头大小的白色伤疤,这是当时皮肤科医生为了做多点活检留下的。之后没多久,公司就启动了使用皮肤癌患者的肿瘤特异性mRNA的正规试验。

    ?ahin和他的免疫学家妻子?zlem Türeci也是在90年代末开始研究mRNA的,但成立公司的时间要比Hoerr晚。他们俩人在德国美因茨约翰内斯古滕贝格大学研究这项技术很多年,期间专利、论文、经费全部到位,并在2007年向一位亿万富翁投资人提交了一份商业计划书。?ahin 说:“如果能成功,将具有开拓意义。”后来,他拿到了1.5亿欧元的创业资金。同年,刚刚成立的mRNA公司RNARx得到了美国政府向小企业发放的一笔相对微薄的款项:97396美元。公司的两位创始人——生物化学家 Katalin Karikó和免疫学家Drew Weissman当时都供职于美国宾夕法尼亚大学(简称宾大),他们做出了现在一些人认为非常关键的发现:改变mRNA的部分密码子能帮助合成mRNA躲过细胞的固有免疫防御。

    开拓性贡献

    Karikó在整个90年代都在实验室埋头苦干,她的目标是让mRNA成为一个药物平台,但资助机构一再拒绝了她的经费申请。1995年,在经历多次挫败后,宾大要求她选择辞职或降职减薪。她最终选择了留下,继续追求她的目标,改进Malone的实验方法[14],诱导细胞产生具有治疗相关性的较大复杂蛋白[15]。到了1997年,她开始与Weissman合作,Weissman此时刚在宾大成立了自己的实验室。两人计划一起开发针对HIV/AIDS的mRNA疫苗。不过,Karikó的mRNA在注射到小鼠体内时产生了很大的炎症反应。她和Weissman很快找到了原因:这种合成mRNA激活了[16]一连串名为Toll样受体的免疫传感器,这些受体能在第一时间对来自病原体的危险信号作出响应。2005年,两人发表论文指出,重新编排mRNA的一个核苷酸——尿苷——的化学键 ,就能创造出一种名为假尿苷的类似物,这种方法似乎能防止机体将合成mRNA视为敌人[17]。

    那个时候,很少有科学家看到修饰核苷酸的治疗价值,但科学界很快就意识到了它们的潜力。2010年9月,波士顿儿童医院干细胞生物学家Derrick Rossi领导一个团队描述了如何用修饰的RNA改造皮肤细胞,先变成胚胎样干细胞,再变成收缩的肌肉组织[18]。研究结果引起了轰动,Rossi入选了《时代周刊》(Time)2010年“年度重要人物”并在坎布里奇市联合创立了Moderna公司。Moderna公司尝试获得宾大在2006年申请的Karikó和Weissman的修饰mRNA专利的许可,但晚了一步。在与RNARx达成许可协议未果后,宾大已于2010年2月向麦迪逊的一家小型实验试剂供应商授予了独家专利。如今名为Cellscript的这家供应商当时在协议中支付了30万美元,现在能从Moderna和BioNTech的转授许可费中获得数亿美元。Moderna和BioNTech是最先推出新冠mRNA疫苗的两家公司,它们的产品都含有修饰的mRNA。 与此同时,RNARx用光了另一笔总额80万美元的小企业资助款项,并在2013年停止经营,在这前后Karikó也加入了BioNTech(同时保留了她在宾大的兼职)。

    假尿苷之争

    Karikó和Weissman的发现对mRNA疫苗的成功是否关键,研究人员对此争论不休。Moderna一直在使用修饰的mRNA,其公司名本身就是这两个词的组合。其他一些公司则不然。马萨诸塞州制药公司Shire的人类遗传学疗法部研究人员给出的理由是,只要添加正确的“帽”结构并清除所有杂质,未修饰的mRNA也能成为一种效果类似的产品。“归根结底还是要看RNA的质量。”Michael Heartlein说。Heartlein在Shire负责领导科研工作,日后在Translate Bio继续推进这项技术——Shire后来把它的mRNA产品线出售给了Translate Bio。(Shire现在属于日本的武田制药。)

    虽然Translate公司的一些人体数据显示,其mRNA不会诱导危险的免疫应答,但它的平台依然需要接受临床验证:它的候选新冠疫苗仍处于人体试验初期。但法国制药巨头赛诺菲(Sanofi)很看好该技术的前景:2021年8月,赛诺菲宣布计划以32亿美元收购Translate。(Heartlein去年另起炉灶,在马萨诸塞州创建了一家名为Maritime Therapeutics的公司。)与此同时,CureVac公司也为缓解免疫应答提出了自己的策略,该策略需要改变mRNA的基因序列,将其疫苗中的尿苷减至最少。二十年的辛苦耕耘似乎终于有了收获,该公司的狂犬病[19]和COVID-19[20]实验性疫苗都在早期试验中表现不俗。

    但在6月,后期的试验数据显示,CureVac的候选新冠疫苗在保护效力上不如Moderna或BioNTech的疫苗。看到这些结果,一些mRNA专家现在相信,假尿苷是这项技术中不可或缺的元素,他们说,Karikó和Weissman的发现是值得认可和嘉奖的主要贡献之一。“真正的获奖者应该是修饰的RNA。”专注于mRNA疗法的合成生物学公司Strand Therapeutics的联合创始人、首席执行官Jake Becraft说。但也不是人人都这么肯定。“可能影响mRNA疫苗安全性和效力的因素有很多,mRNA的化学修饰只是其中之一。”苏州艾博生物科技有限公司首席执行官英博说。这家中国公司的新冠mRNA疫苗已进入临床后期。(产品名为ARCoV,使用的是未修饰的mRNA。)

    脂质突破

    说到关键技术,许多专家还提到了对mRNA疫苗至关重要的另一项创新成果——这次和mRNA没有任何关系。它就是脂质纳米粒(LNP),这种微小脂滴能保护mRNA并将其送入细胞。这项技术来自Pieter Cullis的实验室和他创立或管理的多家公司。Cullis是加拿大不列颠哥伦比亚大学的生物化学家。90年代末起,他的实验室和公司便首创将LNP用于递送能让基因失去活性的核酸链。其中一种药物叫patisiran,现已被批准用于治疗一种罕见遗传病。

    之后,基因沉默疗法逐渐在临床试验中显示出效果,2012年,Cullis的两家公司开始转型,探索LNP递送系统在基于mRNA的药物中的应用前景。比如温哥华的Acuitas Therapeutics公司在首席执行官Thomas Madden的领导下与Weissman在宾大的团队以及多家mRNA公司合作,共同测试mRNA-LNP的不同配比。其中一个配比已经被BioNTech和CureVac的新冠疫苗所使用。Moderna的LNP复合物也与此相差无几。

    这种纳米粒含有四种脂质分子:三个分子决定结构和稳定性;第四个名为可电离脂质的分子是LNP有效的关键。这种物质在实验条件下带正电,与Felgner开发的、Malone在80年代末测试的脂质体具有类似优势。但Cullis和商业伙伴开发的可电离脂质能在生理条件下(如在血液中)变成中性,这样能减少对人体的毒性。此外,混合四种脂质能让产品的保质期更长,在体内的稳定性更好,在Cullis管理的多家公司担任前高管的Ian MacLachlan说,“我们现在的药理学是建立在所有这一切的基础之上的。”

    到了2000年代中期,研究人员想出了一种混合和生产这些纳米粒的新方法,需要用到名为T-connector的装置将脂肪(溶解在酒精中)与核酸(溶解在酸缓冲液中)结合。当两种溶液混合时,这些成分会自发形成紧密的LNP[21]。这种方法已被证明比生产基于mRNA的药物的其他方式更可靠。

    一旦将所有碎片拼接起来,“就像是天呐,我们终于有一个可以规模化的生产流程了。”目前在圣迭戈Replicate Bioscience公司担任首席发展官的Andrew Geall说。2012年,Geall带领首支团队在诺华(Novartis)美国分部成功结合了LNP与RNA疫苗[22]。所有mRNA公司现在都在用类似这种LNP递送平台和生产系统,但相关专利的归属权仍深陷法律纠纷。比如Moderna就与Cullis的一家公司——温哥华的Arbutus Biopharma——对簿公堂:Moderna新冠疫苗使用的LNP技术到底是谁的专利?

    一个产业的诞生

    到了2000年代末,多家大型药企都开始向mRNA进军。2008年,诺华和Shire都成立了mRNA研发部门——前者(由Geall领导)关注疫苗,后者(由Heartlein领导)关注药物。BioNTech便在那年成立,其他初创公司也纷纷入局,这是因为美国国防部高级研究计划局(DARPA)在2012年决定资助产业界研究RNA疫苗和药物。Moderna便是在此基础上壮大的公司之一——2015年已经筹资超过10亿美元,其目标是利用mRNA诱导体内细胞产生自己的药物,治疗因蛋白缺失或失效导致的疾病。当这个计划落空时,Moderna在其首席执行官Stéphane Bancel的领导下只能选择一个更小的目标:做疫苗。

    一开始,许多投资者和观望者都非常失望,因为疫苗平台的颠覆性和盈利性看起来都要逊色不少。截至2020年初,Moderna共有9种针对传染病的候选mRNA疫苗进入了人体测试,但没有一个大获全胜。只有一个候选疫苗进入了更大规模的试验。 面对突如其来的COVID-19,Moderna火速行动,在新冠病毒基因组序列公开后的几天内就做好了一个原型疫苗。Moderna后来与美国国家过敏和传染病研究所(NIAID)合作开展小鼠研究和人体试验,这一切只用了不到10周。BioNTech这边也是全员出动。2020年3月,BioNTech与纽约制药公司辉瑞(Pfizer)合作,在不到8个月的时间里破纪录地走完了从首次人体试验到紧急使用批准的流程。这两款获得授权的疫苗都使用修饰的mRNA加入LNP,而且所含序列编码的新冠病毒刺突蛋白的形状更易诱导保护性免疫。

    许多专家表示,由NIAID疫苗学家Barney Graham、得克萨斯大学奥斯汀分校结构生物学家Jason McLellan,以及斯克里普斯研究所的Andrew Ward设计的这种对蛋白质形状的调整也是一个可以拿奖的成就,虽然这只针对新冠病毒疫苗,不适合所有mRNA疫苗。 围绕mRNA贡献的争论,一些争议涉及谁才拥有最赚钱的专利。但是,许多奠基性的知识产权都要追溯到Felgner、Malone和他们在Vical公司的同事在1989年(以及Liljestrom在1990年)提出的观点。这些产权从授权日起只有17年的有效期,所以现在已经不再受到专利权限制。即使是Karikó和Weissman的专利也将在5年后过期,该专利在2006年申请,后来授权给了Cellscript公司。产业界知情人士表示,这意味着在脂质纳米粒中递送mRNA的宽泛概念很快也将难以申请专利了,但各家公司可以合理地对特定的mRNA序列申请专利,比如某种刺突蛋白的形式,或是专有的脂质配比。各个公司已经在行动了。Moderna作为mRNA疫苗领域的主要入局者,其在流感、巨细胞病毒和一系列其他传染病上的实验性疫苗已经开展了临床试验,它在去年获得了两个专利,范围涵盖广泛使用mRNA产生分泌蛋白(参见:RNA疫苗如何在新冠疫情中弯道超车?)。但有多位产业界知情人士告诉《自然》,他们认为这两个专利可能会出现纠纷。“我们感觉可申请的专利不多了。”加拿大mRNA疫苗公司 Providence Therapeutics的首席科学官Eric Marcusson说。

    回顾过去,许多参与者都表示很高兴mRNA疫苗能给人类带来改变,以及自己有幸做出了有价值的贡献。“见证这一切令我无比激动,”Felgner说,“我们那时坚信会发生的所有事现在都发生了。”




    本文内容转载自“ Nature Portfolio”微信公众号。

    原文链接:https://mp.weixin.qq.com/s/IYAFjB2QjFpVB13Z0bPqew
































相关报告
  • 《述评|欧盟人脑计划启示录——反思“大科学计划”》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-12-04
    • 本文内容转载自“ 信睿周报”微信公众号。 原文链接: https://mp.weixin.qq.com/s/0rm5r1SyPngXwsk3_Z878g 2013年1月28日,欧盟正式宣布批准两个“未来和新兴技术”(Future and Emerging Technologies, FET)旗舰项目,其中之一便是世界上首个超大脑计划——欧盟人脑计划(Human Brain Project, HBP)。该计划于同年10月1日正式启动,为期10年,总经费超过6.07亿欧元。[1]HBP最终联合了19个国家、150多个研究单位的500多个科学家,可谓声势浩大。其发起人马克拉姆(Henry Markram)曾声称,到2023年该计划将在超级计算机上仿真出整个人脑。[2]这样惊人的目标和声势在国际社会引起极大震动。此后,美国、日本、以色列、澳大利亚、韩国和中国也先后推出了自己的脑计划[3],并曾讨论建立国际机构以协调各国计划。 不过,HBP从一开始就争议不断,中间还经历了一场“宫廷革命”,发展至今,其从科学目标到组织管理都发生了巅覆性的变化。2023年9月30日是HBP结束之日,对于这个大科学计划[4]的功过是非也到了“盖棺定论”之时,是时候总结一下这个计划的经验和教训了。或许,这对我们应该支持什么样的大科学计划,怎样处理大科学计划与自由研究之间的关系也会有所启迪。 历史沿革 早在2013年秋HBP启动时,笔者就发表过一篇题为“The Human Brain Project EU is Unlikely to Create an Artificial Whole-Brain in a Decade”(《欧盟人脑计划不大可能在10年内创建人工全脑》)的文章。[5]其中指出,历史上所有成功的大科学计划背后都有坚实的理论基础支撑,而对于全脑的创建,到目前为止还没有哪怕很粗浅的理论框架;同时,从马克拉姆与此类似的“蓝脑计划”(Blue Brain Project, BBP)的表现来看,他虽在2009年就提出3年内建立人工鼠脑,但却没有实现,并在2012年重提。在理论和实践两方面都无突破性进展的情况下,马克拉姆有关复制人工脑的看法突然发生了根本性转变——要在10年内创建人工全脑,笔者对此深表怀疑。事实上,持怀疑态度的并非笔者一人,许多科学家都对此计划提出疑问,不过很少专门为此撰文而已。 2014年7月,有超过150名科学家联名上书欧盟委员会,批评HBP在研究方法上过于狭窄,在实现其所设目标方面存在巨大风险和不透明管理。他们指出,HBP已“偏离正道”,并要求对该计划的科学内容和管理两方面进行独立的严格评估,以决定是否继续资助,声称如果欧盟不采纳他们对评估所提出的要求,就将抵制并号召同行也抵制参与和HBP有关的伙伴计划。签名者迅速发展到800多人。 事情闹到这一步,欧盟不得不介入。为此设立的调解委员会认可了公开信中的主要批评意见,并在2015年3月9日发布调解报告,指出HBP的当务之急是重新取得公众和科学家的信任。[6]在计划的科学内容方面,报告认为仿真人脑“难望其成功”,HBP应该将其目标重新定位到在有限时间和有限资源条件下可望实现的具体目标上。报告特别强调HBP应该开发对脑科学研究有用的各种信息学平台设施,对原来的机构进行改组。而就在报告正式公布前不久,以马克拉姆为首的三人执行小组成员递交了辞呈。[7]稍后,HBP理事会批准了调解报告。不过,HBP的发起者中有许多人认为数字重建全脑是原来计划的“亮点”,取消这一目标将使HBP沦为一个“平庸的计划”。 在这次“宫廷革命”之后,HBP演变为主要致力于开发脑研究所需信息通信技术的计划,以及向神经科学家提供信息通信技术软硬件服务的永久性国际设施。从其具体科学技术内容来看,HBP依然分成两大块:神经科学子项目和信息学通信基础设施平台。其中,神经科学子项目包括4个子项目:鼠脑组织、人脑组织、系统和认知神经科学、理论神经科学。信息学通信基础设施平台包括6个子计划:神经信息学、脑仿真、高性能数据分析方法和超级计算、医学信息学、仿神经计算(neuromorphic computing)[8]、神经机器人学。这些平台通过协作实验室接口彼此连接。此外,还有一个“伦理与社会”子项目。 在2016年11月2日出版的《神经元》(Neuron)杂志有关各国脑计划的专刊上,HBP的新科学主任阿蒙茨(Katrin Amunts)宣布计划更新后的目标如下: HBP是一个为期10年的欧盟旗舰计划,其目标是在多个尺度上重建脑组织。这一计划在所有层次上把实验、临床数据、数据分析和仿真紧密结合在一起,这样就能最终在各个层次之间架设起桥梁。HBP的信息学和计算机构筑是独一无二的,它利用云技术进行合作,研发出具有数据库、工作流程系统(workflowsystems)、千万亿字节(petabyte)存储和超级计算机的各种平台。人脑计划将发展成推进脑研究、医学和脑启发(brain-inspired)信息技术的欧洲研究设施。 …… HBP提出了一种独特的基于信息技术的策略,这一策略把全世界的神经科学数据整合在一起,多层次地认识人脑及其疾病。因此,目前所有的这些平台原型将逐渐转变为更为可靠、对用户友好并紧密地整合起来的研究基础设施。成立一个HBP法人实体将为不受计划时间限制的、永久性的基础设施奠定组织基础。 关于HBP更详细的历史沿革,笔者有系列文章[1,3,6-7]进行过跟踪报道,此处不再赘述。 主要成就 HBP官网在2023年6月公布了取得的主要成就[10],包括发表了2500多篇论文,建立了一个专用于脑研究的基础设施——网上平台EBRAINS(在此平台上,科研人员可共享并不断更新数据、模型和软件),鼠脑及其他脑图谱(包括多层次的人脑图谱),脑仿真、脑启发技术(两个平台都包括仿神经计算和神经机器人学子平台),医学数据分析,计算与存储资源以及合作事宜。此外,还有一个可供多学科共享的超级计算机设施Fenix。具体来看,主要成果有: 1. 在EBRAINS上公布了迄今为止最详尽的多尺度人脑图谱,显示其三维细胞构筑,包括某些以前未被确认的脑区,并显示其人际差异。 2. 借助EBRAINS上的人脑图谱,建立癫痫患者的个性化脑模型,以确定癫痫病灶。 3. 有关帕金森病患者大脑对脑深部刺激(一种常见治疗方法)的多尺度仿真,可帮助临床医生预测治疗效果。 4. 用磁脉冲精确刺激特定脑组织,并分析此时的脑电图复杂性,以判断闭锁综合征病人是否仍有意识,开发用于帮助残障人士复明或行走的神经植入物。 5. 对小脑进行仿真,用以控制机器人臂精确地执行动作。 6. 开发出两种大规模的仿神经系统:脉冲发放神经网络构筑(SpiNNaker)和仿神经混合系统脑启发多尺度计算(BrainScaleS-2)。这些系统中的神经元数都达到了百万级以上,而消耗的能量要比在传统计算机上仿真低4个数量级以上。这些系统的共同特点是采用脉冲发放神经元作为基本元件,并用脉冲进行通信,这是其能耗低的关键所在。 7. 模仿大鼠脑开发出一种称为触须眼(WhiskEye)的机器人。这种机器人有两个摄像机眼和24根人工触须,并有基于仿神经芯片的内置认知模块,因而可以在布满物体的环境中行走。 8. 通过强化学习训练机器人模仿人类手指的协同活动。 此外,马克拉姆在任时还建立了一个有生物真实性的微皮层回路模型。[11]该模型历时20年,由国际上82位科学家合作,仿真了幼鼠体感皮层中一块1/3立方毫米大小的组织,其中包含3万个神经元和4000万个突触。该模型中包括207种不同的神经元类型,科学家分析了这些神经元的形态、在皮层各层中的分布和放电模式,再按照不同类型神经元在此组织中的密度在仿真组织中安排虚拟神经元的分布,每个神经元的细胞膜都考虑了13种不同的和跨膜电位以及钙离子浓度有关的离子通道。据此,模型仿真得出的一些结果和动物实验吻合得很好。 几点思考 怎样的大科学计划才是有效的? 自HBP启动以来,世界各国掀起了对脑进行大科学研究的狂潮。美国前总统奥巴马任内启动美国脑计划时,曾在国情咨文中把美国脑计划和人类基因组计划相提并论,并认为执行该计划将可“揭开阿尔茨海默病之谜”。后来他又声称:“它将使科学家有工具得出行动时脑中的动态图景,并使我们能够更好地认识人类是如何思维、学习及记忆的。”[12]如今,其他计划都还在进行之中,成败还有待观察,HBP则已到了即将曲终人散的时候,从其成败中我们或许可以总结出一些经验和教训。 回顾历史上成功的大科学计划,如研制原子弹的曼哈顿计划、奔月的阿波罗计划,乃至人类基因组计划,就其本质来说都是一些工程技术计划,背后都有坚实的理论基础。即使人类基因组计划这样经常被拿来和脑计划进行类比的计划,也有DNA双螺旋结构理论作为支撑。这些计划通常都有具体目标和相对明确可行的技术路线,问题主要在于资金、人力、物力和组织。然而,尽管马克拉姆在仿真神经元时有不俗的表现——这是因为对神经元的脉冲发放有霍奇金—赫胥黎方程这样的理论框架,但对于脑整体的仿真来说,迄今为止还没有任何,哪怕是初步的理论框架。另外,如果人脑计划如奥巴马或马克拉姆所声称的那样,以阐明人脑高级功能、复制人工脑和在短期内发现治疗各种脑疾患的手段为主要目标,那么这样的计划就不会成功。这也是HBP在“宫廷革命”之后取消了在超级计算机上仿真全人脑的目标的原因。美国科学家在提出他们的人脑计划时也没有如奥巴马所希望的那样,把阐明人脑高级功能和在计划期间解决各种脑疾患问题作为目标——因为人类对许多脑疾患的发病机制还远不了解。 当然,笔者并非说大科学计划没有意义。对于有明确目标、坚实理论基础,主要通过工程技术实现,而又须耗费大量人力、物力、财力、从上到下统一组织的问题,或者建立科学家可以共享的代价高昂的大型设施,大科学不仅必要,而且可能。即使对于人脑研究来说,如果把目标定在开发研究脑的新技术,开发并建立耗资巨大的大型设备,系统搜集脑的基础数据(如神经元分类、多尺度脑图谱、宏观和微观的脑连接组学等),建立与广大脑科学家分享这些数据、软件和模型的公用平台,那么大科学计划还是有意义并有一定可行性的。 美国艾伦脑科学研究所和人类连接组计划就是这样做的,虽然它们也得到了相当多的资助(人类连接组计划得到了约4000万美元的资助,艾伦脑科学研究所一共得到了5亿美元的资助),不过和耗资6.07亿欧元的HBP相比还是少多了。目前许多大型脑计划(包括“宫廷革命”后的HBP)都把重点转向了这些方面,它们有可能在将来为脑机制研究取得突破提供工具和数据,但在笔者看来,相较认识脑机制、治疗脑疾患和开发智能机器本身,它们还算不上突破。 新技术如果不能用于解决合适的问题,就失去了意义;数据也并不等于知识。想取得真正的突破,一如20世纪最伟大的生物学家克里克(Francis Crick)指出的那样,需要“新的技术和思想”[13]。但就连马克拉姆本人也说过,为此需要十几个爱因斯坦。然而,这些都不是能计划出来的,也不是靠金钱就能解决的。在笔者看来,大科学计划和独立科学家或科学家小组的自由研究,二者不可偏废。在当前情况下,或许后者更为重要。当然,这可能也需要引导,或许由神经科学领军人物集中智慧提出脑研究中需要解决的若干迫切重大问题——就像1900年希尔伯特(David Hilbert)在巴黎的国际数学大会上总结出当时数学需要解决的23个问题那样,再由各种基金组织遴选其中最有新意又有一定可行性的申请予以资助,会更有成效。 是在超级计算机上逆向工程全脑,还是从脑研究中寻求启发? 这是一个令科学界争论不休的问题。马克拉姆的回答无疑是前者:“我们研究方法的关键在于精心研究脑赖以产生的基本蓝图,也就是在整个进化过程以及胚胎发育过程中指导构造脑的整套原则。从理论上说,这些原则正是我们着手建造脑所需的全部信息。怀疑是有道理的:这些原则所造成的复杂性是惊人的,因此我们需要超级计算机来解决问题。不过,发现这些原则本身要好办得多。如果我们找到了这些原则,那就没有任何逻辑方面的理由,足以证明我们不能利用生物学上产生脑的同样蓝图去建造一个硅脑。”[14] 持这种想法的并不只有马克拉姆,美国发明家霍金斯(Jeff Hawkins)在其畅销书《千脑智能》中说了几乎同样的话:“要创造真正智能的机器,我们首先需要对大脑进行逆向工程。”“实现机器智能的最快途径是理解大脑的工作原理,然后在计算机中模仿这些原理。”[15]美国神经科学家毛克(Michael D. Mauk)也认为,构建人工心智所需要的只是“辛勤工作”,再加上速度更快和存储量更大的计算机,“关键在于神经元及其联结所服从的规则是有限和可以理解的”。[16] 然而,当代脑机接口的领军人物尼可莱利斯(Miguel A. L.Nicolelis)严厉地批评了上述观点,[17]他认为这些观点的错误在于把脑当成了一种肉体版的数字计算机。他指出,脑及其许多高级功能在图灵意义下都是不可计算的。因此,不管超级数字计算机如何先进,都不可能复制人脑。脑的运作既有数字成分又有模拟成分,二者之间还存在着递归的、非线性的动态相互作用,这更远超图灵机的能力。他不点名地批评了这些观点的鼓吹者:“如果这种荒谬的说法仅仅局限于好莱坞的科幻电影之中,那倒没多大关系。但是只要某些计算机科学家,甚至神经科学家也在公众面前重复这种神话,并向欧洲和美国的纳税人索要几十亿美元,毫无意义地去追求在数字媒介上实现模拟人脑的企图,问题就变得异常严重了。” 既然如此,阐明脑机制的问题就不像马克拉姆们所期望的那样,只要加强数字计算机的算力就能解决。事实上,从马克拉姆提出人脑计划至今已超10年,他当初预言10年内就能在超级计算机上仿真整个人脑,根据的是计算机算力发展的摩尔定律。虽然摩尔定律至今尚未过时,但不要说是人脑,就算是他一再声称的在3年内就能仿真鼠脑,也依然遥遥无期。 笔者认同尼可莱利斯的观点,认识脑虽然和开发智能机器有关,但却是两个不同的任务,对于工程技术来说,只能从脑研究的成果中寻求启发,而不是在计算机上逆向工程人脑。 马克拉姆的微皮层回路模型大概算得上遵循逆向工程路线的最佳例子了,尽管如此,其模型中依旧保留了大量的假设,而不能完全算是逆向工程。不过这一“标志性成就”并未得到科学界的一致称赞。一些科学家认为,这一长达36页的工作成果正好说明了重建全脑的想法是一种浪费金钱的误导。这一模型并不能实现任何认知功能,德国神经科学家黑尔姆施泰特(Moritz Helmstaedter)认为这“并没有真正的发现。把大量数据堆砌在一起并不能创造出新科学”。英国科学家莱瑟姆(Peter Latham)认为“关键是您可愿意花10亿欧元来做这些事?这才是问题之所在”。[18] 仿真小脑机制控制机器人运动可能有其实用价值,早在人脑计划之前,诺贝尔生理学或医学奖得主埃德尔曼(GeraldEdelman)就设计过一种仿真小脑回路控制的机器车(达尔文机),它能自由穿越弯曲小径,不过他的目的主要是以此验证小脑的运动控制机制,和通过仿真做一些在生物上难以操作的实验来验证某些假说。[19]但达尔文机作为一种无人驾驶车辆依然只能活动在积木世界之中,真正在大道上行驶的无人驾驶汽车甚至完全与小脑机制无关。至于HBP的仿小脑机器是否能得到应用,让我们拭目以待吧。 为什么不但按逆向工程拷贝脑开发智能机器之路不通,完全按照工程技术的策略研究大脑也行不通? 笔者曾经指出:“大自然并不像工程师那样行事。工程师喜欢均一性,而大自然更喜欢变异性和多样性。工程师在建造某一系统之前,心中先有一张蓝图。他们希望元件的种类尽可能少,同类元件中的每一个都完全一样,这样在进行分析、设计、建造和修理时都比较方便。然而大自然并不刻意地设计生物,它让多少有所不同的个体彼此竞争,没有两个个体是完全一样的。在竞争中,只有更适应其环境的个体才更有机会存活并产生下一代。埃德尔曼的神经达尔文主义也假定在神经系统的回路或模块之间存在竞争,只有适合于完成其目标的回路或模块才能保存下来。”[20]而马克拉姆等人却把希望寄托在这种乌有的自然蓝图上,当然只能是缘木求鱼。 另一个道理就如分子生物学家雅各布(Franc?ois Jacob)所说:“进化是个修补匠,而不是工程师。”当面临新任务时,大自然并不从顶层按照逻辑做全新的设计,而只是在现有的基础上做些更新,这就决定了脑并非如一般人所想的那样完美无缺。正如林登(David J. Linden)在《不完美的大脑》一书中所说:“从脑区、回路到细胞、分子,无论从哪个层次看,大脑都是个设计拙劣、效率低下的团块,可又出人意料地运作良好。大脑不是终极且万能的超级计算机,不是一个天才在白纸上即兴完成的创作。大脑是一座独一无二的大厦,积淀着数百万年的进化历史。”[21]既然如此,我们为什么还要盲目照搬进化过程产生的一切,而不是从中寻求启发,根据自己的需要和条件去从头设计呢? 最后,从工程技术上来说,人们喜欢还原论方法,认为只要把整部机器拆成一个个零件,研究清楚了每个零件的性质和彼此之间的联结方式,就可以推断出整部机器的工作原理。这种方法是如此成功,以至在脑研究的历史上也留下了深刻的烙印。但是脑不像机器那样简单,它有着许许多多不同的层次,不仅下一个层次中的元件性质及其相互联系对上一层次的功能有贡献,上一层次的动作对下一层次也有影响。并且,不仅是相邻层次之间,甚至在各个层次之间都存在着相互影响。这里起作用的已经不再是在工程技术中占统治地位的线性因果链,而是既有自下而上,又有自上而下的循环因果关系(互为因果)。脑不仅是某种信息处理系统,更是某种意义提取系统。[22]这是工程技术前所未遇的难题。 结语 “10年内仿真人全脑”这样吸睛却缺乏可行性的目标,在最初被提出时就是不可能实现的,马克拉姆本人也并非不知道这一点。2009年,他在“蓝脑计划”官网的“问答”一栏中就清楚地说过,“以目前和可预见的未来的计算机技术而论,还不大可能仿真一个精确到细胞和突触复杂性水平(分子层次以上)的哺乳动物脑”。对于是否可用一台计算机来仿真人脑,他的回答是:“这不太可能,也没有这个必要。要这样做是非常困难的,因为脑内的每个分子就是一台功能强大的计算机,我们若要实现以千兆计的分子的结构和功能,还得仿真这些分子相互作用所遵循的全部规律。你至少需要比现在大千兆倍和快千兆倍的超级计算机。哺乳动物自己就能繁殖,我们无须用计算机来复制哺乳动物。这不是我的目的。我们只是想认识生物系统是如何工作的,又为什么会失常,这将造福于人类。”(当然,这些话后来都从网站上被删去了)。 虽然HBP由于“宫廷革命”而放弃了逆向工程人全脑的最初目标,对照新领导提出的目标建立了EBRAINS平台,开发出多层次的脑图谱,圈内也有些科学家利用这一平台取得了治疗癫痫这样的成就,但圈外科学家是否愿意把自己的数据和其他成果贡献给这个平台仍有待观察。另外,HBP在今年3月向欧盟申请3800万欧元以维持EBRAINS在HBP到期后继续运行遭到否决,不过6月获准再申请一次。如果依然不行,那就只能寄希望于私人或个别国家的资助了,前途未卜。[23] 而关于“在多个尺度上重建脑组织”则并没有见到突破性进展。“在所有层次上把实验、临床数据、数据分析和仿真紧密结合在一起......最终在各个层次之间架设起桥梁”,这些都是带有方法论性质的原则,而不像是科学计划的具体目标,任何计划只要有资金支持就可以在这方面有所进展并发表论文。HBP在这方面确实有所推进,但是笔者还没见到可称得上是“科学史上的突破”的成就。而想要由一个平台搜集全球所有的实验数据和临床数据,则更成问题。早在20世纪末,美国科学家科斯洛夫(S. H.Koslow)就提出过以此为目标的“人类脑计划”,并曾在世界主要国家建立起“节点”,结果无疾而终。 即使就HBP的两大主要成就来说,EBRAINS是否成功,最后也要看有多少科学家乐于访问该平台,并据此做出突破性贡献;仿神经芯片有可能在对耗能要求极高的场合起作用,但是否能发展成新一代计算机,不但要看科学家能否开发出相应的生态系统,而且要看有多少科学技术人员愿意在传统计算技术飞速发展的当下,舍弃自己已经投入大量时间和金钱而已驾轻就熟的传统技术,从头学习一门前途未卜的新技术。这些都还有待观察。 因此,我们可不可以说,HBP从一开始就是一个在科学思想上不正确,在可行性有问题,通过杰出的营销手段炒作出来的功利性计划?中间它又因一场“宫廷革命”放弃了原来的“卖点”,变成了一面大旗之下的大拼盘。确实,这样一锅夹生饭谁都不容易烧好,虽然计划最后得以交差——推出了一个EBRAINS网上平台、两种仿神经芯片和2500篇论文,但值得为此花费纳税人数亿欧元吗?对HBP的官方评审将在今年11月进行,明年1月公布,感兴趣的读者不妨拭目以待吧。[24] 马克拉姆认为脑科学经过哲学思辨、实验和理论研究的阶段,现在已经到了一个他称之为“仿真神经科学”(simulation neuroscience)的新阶段。[25]确实,在计算机上进行仿真可以检验假设,做一些生物学实验难以完成的“数字实验”,这对跨层次研究尤其重要,但它只是工具。在笔者看来,进行生物学实验,从中找出规律,特别是神经回路之类的介观层次上的规律,提出新的思想,依然是当务之急。仿真只是其中的一个环节,绝不可能代替实验和提出新思想,也不会成为神经科学研究的新范式。找出全脑的理论框架依然是最为重要的课题,但是极难预见人类什么时候能做到这一点——毕竟任务的重要性并不等于在当下就能实现这个任务的可能性。 1998年,拉马钱德兰(V. S. Ramachandran)曾经说过,如果用物理学来做参照,那么目前的神经科学依然处于法拉第阶段,而不是麦克斯韦阶段。[26]笔者认为,从总体上来说,目前的脑科学依然如此,当务之急是努力把脑科学从法拉第阶段推进到麦克斯韦阶段,而非进入什么仿真神经科学或工业化大科学的新阶段。一心想要在二三十年甚至10年内就揭开人脑之谜,只能是揠苗助长和水中捞月。 [1] 顾凡及. 从蓝脑计划到人脑计划: 欧盟脑研究计划评介[J]. 科学, 2013,65(4): 16-20. [2] MARKRAM H. The Human Brain Project[J]. Scientific American,2012(6): 50-55. [3] 顾凡及. 全球脑计划[J]. 环球科学, 2017(7): 58-59. [4] "大科学" 是20世纪50年代国际科技界提出的概念。主要表现为投资强度高、多学科交叉、配置昂贵且复杂的实验设施(设备)、研究目标宏大等, 具有多学科、多目标、多主体、多要素等特点, 其复杂程度、经济成本、实施难度、协同创新的多元性等往往都超出一国之力, 需要通过国际科技创新合作来实施。 [5] GU F. The Human Brain Project EU is Unlikely to Create an ArtificialWhole-Brain in a Decade[J]. Brain-Mind Magazine, 2013, 2: 4-6. [6] 顾凡及. 欧盟人脑计划面临新斗争[J]. 科学, 2015, 67(5): 35-38. [7] 顾凡及. 欧盟和美国两大脑研究计划之近况[J]. 科学, 2014, 66(5): 16-21. [8] 国内通常译为 "神经形态计算" , 笔者以为此译名不妥, 极易误导读者。不错, neuromorphic的前缀neuro是神经的意思, 词根morphic来自希腊文morphe?, 意为形态、形式, 也有类似于、接近于的意思。传统译名采取了前一个意思 "形态" , 这就容易使读者误以为这种芯片和神经组织在形态上有关, 其实完全不是这么回事, 是其构筑方式和功能上类似于相应的神经组织,或者说是在模仿其内在机制, 因此笔者以为译为 "仿神经" 较为贴切。 [9] AMUNTS K, EBELL C, MULLER J, et al. The Human Brain Project:Creating a European Research Infrastructure to Decode the HumanBrain[J]. Neuron, 2016, 92: 574-581 [10] HBP. A Closer Look at Scientific Advances[R/OL]. (2023-04-13)[2023-07-26]. https://www.humanbrainproject.eu/en/science-development/scientific-achievements/brochures/. [11] MARKRAM H, MULLER E, RAMASWAMY S, et al. Reconstruction and Simulation of Neocortical Microcircuitry[J]. Cell, 2015, 163: 456-492. [12] 顾凡及. 尖端创新神经技术脑研究计划: 美国脑研究计划评介[J]. 科学,2013, 65(5): 19-23. [13] 吕向东. 狂热的追求[M]. 唐孝威, 译. 合肥: 中国科技大学出版社, 1994. [14] MARKEAM H. The Human Brain Project[J]. Scientific American,2012(6): 50-55. [15] 霍金斯. 千脑智能[M]. 廖璐, 等译. 杭州: 浙江教育出版社. [16] MAUK M D. There is No Principle that Prevents Us from Eventually Building Machines that Think[M]//Think Tank: Forty NeuroscientistsExplore the Biological Roots of Human Experience. New Haven; London:Yale University Press, 2018. [17] NICOLELIS M A L. The Human Brain, The True Creator of Everything,Cannot be Simulated by Any Turing Machine[M]//Think Tank: Forty Neuroscientists Explore the Biological Roots of Human Experience. NewHaven and London: Yale University Press, 2018. [18] KUPFERSCHMIDT K. Rat Brain—or a Smidgeon of it—is Modeledin a Computer[N/OL]. Science, (2015-10-08)[2023-07-26]. http://www.sciencemag.org/news/2015/10/rat-brain-or-smidgeon-it-modeled-computer. [19] MCKINSTRY J L, EDELMAN G M, KRICHMAR J L. A Cerebellar Model forPredictive Motor Control Tested in a Brain-Based Device[J]. Proc NatlAcad Sci USA, 2006, 103: 3387-3392. [20] 林登. 不完美的大脑: 进化如何赋予我们爱情、记忆和美梦[M]. 沈颖, 等译. 上海: 上海科学技术出版社, 2022. [21] FREEMAN W J. How Brains Make up Their Minds[M]. London:Weidenfeld & Nicolson, 1999. [22] KUSHNER D. The Discover interview-Henry Markram[J]. Discover,2009(12): 61-77. [23] NADDAF M. Scientists Aimed To Recreate the Brain in a Computer.How Did it Go?[J]. Nature, 2023, 620: 718-720. [24] 同上。 [25] FAN X, MARKRAM H. A Brief History of Simulation Neuroscience[J].Frontiers of Neuroinformatics, 2019, 13 (32): 1-28. [26] 拉马钱德兰. 脑中魅影——探索心智之谜[M]. 顾凡及, 译. 长沙: 湖南科学技术出版社, 2018.
  • 《应对疫情爆发的新型疫苗技术概述》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-12-21
    • 自200多年前第一种疫苗被研制出以来,疫苗接种极大地减轻了世界范围内传染病的负担,其中最显著的效果便是根除了天花,并且控制了脊髓灰质炎、破伤风、白喉和麻疹等疾病。目前大量的研究工作集中在改进现有的疫苗和发现新的疫苗上,比如2006年开发的人乳头瘤病毒(HPV)疫苗。然而,全球人口密度、年龄分布和旅行习惯的巨变以及气候的改变都有助于新旧病原体的出现,这些病原体的存在成为疾病大流行威胁的风险。近年来,艾滋病毒(HIV)、严重急性呼吸综合征冠状病毒(SARS-CoV)、埃博拉病毒和寨卡等严重感染性疾病的迅速蔓延,突显出了全世界对做好疾病大流行万全准备的迫切需求,需要快速地研发和配备相应的疫苗以应对那些可能新出现的病原体。更重要的是,还要寻找新的方法来应对抗生素耐药细菌的感染。考虑到以上种种,现有的用于确定新候选疫苗的方法已经不足以保障全球了。因此,开发能够实现快速开发和大规模生产的新疫苗技术至关重要。 9月19日,Frontiers in Immunology期刊发表文章《应对疫情爆发的新型疫苗技术》(New Vaccine Technologies to Combat Outbreak Situations),集中讨论了应对这些全球卫生威胁挑战的潜在新方法,包括病毒载体疫苗以及核酸(DNA和mRNA)疫苗等。 在疾病爆发情况下疫苗研发面临的挑战 传统的常规疫苗通过减毒或灭活相应病原体的方法,成功地减轻了相关传染病的传播,包括促使天花的消灭以及对脊髓灰质炎、破伤风、白喉和麻疹等疾病的控制。然而,现有的疫苗制备方法在疫情爆发的情况下可能并不合适甚至不可行。减毒活疫苗通常都有逆转的风险,这使得该方法不适于针对高致病性并且未经鉴定的病原体疫苗的开发。而灭活的疫苗可能无法激活人体的免疫反应(如埃博拉疫苗),甚至还可能导致不良反应的发生,比如在20世纪60年代的临床试验中,经福尔马林灭活的呼吸道合胞病毒(RSV)会在野生型RSV感染中加剧疾病。此外,疾病爆发的具体情况也可能限制常规疫苗开发的可生产性。常规的方法要求对病原体的培养和繁殖,而在疫苗生产的过程中,可能会受到各个因素的阻碍,比如在体外条件下难以或无法培养出病原体,或者对病原体的培养需要在较高生物安全等级和专门的实验室中进行。因此,需要新的普适方法来对完整病原体经行培养,有效并快速地对抗疫情的发生。 要验证这些新技术能否对于未来的疾病大流行起着有效预防作用,还需要克服很多挑战。新发病原体的不可预测特性是全球疾病大流行防范的核心问题之一。人畜共患病不断对人类造成威胁,如艾滋病毒、SARS病毒和中东呼吸综合征冠状病毒这类以前没有被鉴定过的病原体被引入人群中。而流行性流感病毒引起的全球爆发表明,已知的病原体也有变异和适应新宿主或新环境的潜力。近年来的局部地区疫情和全球范围内疫情充分说明,RNA病毒引发疫情的风险最高,其高突变率有利于其的适应性。 由于在疫情爆发前无法确定相关病原体,时间跨度仍然是开发有效疫苗所面对的主要障碍之一。目前,传统疫苗在临床阶段的平均开发时间基本都在10年以上。因此,迫切需要新的方法,快速开发疫苗和进行使用许可,以防止新爆发的疫情蔓延全球。 另一个主要的问题是疫苗开发生产的成本。使用现有的技术手段开发一种新的候选疫苗估计需要超过5亿美元,而进一步建立设施和设备的费用则从5千万美元到7亿美元不等。虽然说为了达到安全标准,某些疫苗开发的成本是无法避免的,但是在大多数传统疫苗技术中,对每种疫苗的专门生产过程和设施的需求使得疫苗的功能验证及生产成本居高不下。 另一个问题是现有方法的生产力通常不足以供应全球疫苗接种。即便已经知道潜在的威胁,并且已经建立了疫苗生产的技术流程,比方说对流感疫苗的制备,在流感爆发的高峰期间,疫苗的供应还是存在问题。经过世界卫生组织(WHO)的努力,流感疫苗在2015年时的潜在生产能力理论上说可以供应全球43%的人口接种两剂疫苗。然而疫苗生产的全球分销在发达国家和发展中国家之间存在巨大的差异:2015年一项研究调查显示,仅5%的流感疫苗剂量分布在东南亚、地中海东部和WHO非洲区域,而这些地方有着全球一半的人口。此外,大多数目前获批的流感疫苗鉴定病毒基因型和生产分发的过程要经历3-5个月的时间,这已经足够让流感病毒在全世界范围内传播了。因此,面对疫情爆发的威胁,快速生产大量疫苗的技术是非常必要的。 目前通过监测具有高流行潜力的病毒来应对这些挑战的机构中,最值得注意的是流行病防范创新联盟(Coalition for Epidemic Preparedness Innovations,CEPI),它主要资助和开发针对潜在大流行病原体的疫苗。 疫苗技术 过去几十年间,一系列新疫苗技术发展蓬勃,从活病原体的靶向衰减技术到生物工程蛋白和抗原肽以及病毒载体和核酸抗原技术层出不穷。该文章重点讨论病毒载体及核酸疫苗。 病毒载体疫苗 基于病毒载体的疫苗需要在一个不相关的,经过人工修改的病毒中插入一个或多个抗原的编码基因,这是一个高度通用的平台。相比于目前许多成熟的疫苗技术,这种方法存在许多优势。这种技术通常采用有活性的(能复制但很微弱)或非复制型的载体。20世纪80年代以来,大量的研究已经构建了多种病毒作为疫苗载体,这些病毒进入宿主细胞后能够编码外源的抗原。 鉴于目前已经有大量不同类型的病毒载体可供选择,并且它们作为免疫原的使用操作和相关功能都有海量的研究,这种病毒载体疫苗是疫苗开发方面一个很有价值并且具有高度通用性的研发平台。 病毒基因组在经过改造后可以表达任何一种抗原蛋白,它们这种稳定接受基因组中插入较大基因片段的能力是对疫苗大量开发一个强有力支持。在用基因信息传递目的抗原的过程中,需高保真的抗原合成,准确定位和加工,比方说蛋白质的折叠、多聚、修饰以及保证其在细胞内被运输到特定的靶点。值得注意的是,这种方法一般适用于人类病原体来源的病毒靶向抗原,它们会在人类细胞中自然表达。而那些细菌抗原或寄生虫抗原有可能在哺乳动物细胞中有着不一样的定位和加工方式。病毒载体能够在模拟自然感染的靶细胞中诱导刺激,从而激活有效的免疫反应。因此,病毒载体疫苗无需额外的佐剂即可接种。 虽然病毒载体疫苗有许多优点,但是疫苗开发时还必须考虑几个方面。首先,病毒载体是转基因的产物,因此有人认为它们的释放会对人类健康和环境造成潜在的威胁。其次,病毒载体疫苗的使用引发了对其在人体中安全性问题的关注,比如说这些病毒是否会整合到宿主基因中或者说减毒的疫苗在宿主细胞内是否会持续大量复制。这些问题都要在疫苗开发前和进行临床试验期间做好详细的评估。因为这些担忧不仅关乎疫苗安全,还很有可能在疾病大流行情况下导致临床研究的推迟。 在病毒载体疫苗的生产过程中,每个病毒系统都需要用不同的细胞体系进行培养,因此不同的病毒载体需要不同的制造设备。病毒载体疫苗的生产是一个相当复杂的过程,通常会涉及到多种来自人类或动物的成分,因此在疫苗生产的各个步骤中都需要对污染物进行全面检测。 DNA疫苗 核酸疫苗的开发和生产有许多优势,然而使用DNA作为疫苗的基础也有劣势。其中一个问题是注射这种疫苗后DNA质粒在体内是否会长期存在。事实上,很多临床前研究表明,在小鼠模型里,肌肉注射DNA疫苗后,该DNA质粒可在体内存在达两年之久,并且能检测到其低水平的表达和免疫原性。尽管在一些实验中并没有检测到小型动物模型肌肉注射后出现DNA整合的现象,但是在经过小鼠电转实验后能够观察到基因组整合的现象。这表明了整合现象虽然是小概率事件,但是仍要在增加外源DNA摄取的体系中考虑到这一风险。 WHO建议将整合研究作为DNA疫苗临床前安全计划的一部分。此外,还要考虑注射含有非甲基化CpG序列的细菌DNA是否也会引发安全问题。在接种过疫苗的生物体内,抗药性的标记是否存在潜在表达能力这一疑问同样也引起了疫苗安全方面的担忧,研究人员会在新一代DNA疫苗中选用替代的筛选标记来消除这一疑虑。 最后一点,那些用来增强DNA疫苗免疫原性的细胞因子或共刺激因子的加入,可能会对身体内细胞因子的正常表达和释放产生不良影响,比如说造成广泛的免疫抑制、慢性炎症反应或自身免疫疾病。 RNA疫苗 尽管已有研究报道经皮内或淋巴结内途径注射裸露mRNA能够诱导免疫应答,但只有mRNA还不足以用作广泛使用的预防性疫苗。由于细胞外普遍存在核糖核酸酶可以催化RNA的水解,处于非保护状态下的裸露mRNA在生理条件下是高度不稳定的,并且由于其亲水性和强大的净负电荷性,进入体内后很难被细胞有效地吸收。而克服了这一系列问题的新一代mRNA利用了脂质纳米颗粒(Lipid Nanoparticle,LNP)一类的高效载体,使mRNA不受核糖核酸酶的影响,延长相应的抗原在体内表达的时间,因而在该疫苗进行体内注射后能够产生强有力的体液免疫反应和细胞免疫反应。 利用RNA疫苗激活天然免疫反应可能是一把双刃剑。系统性的I型干扰素对模式识别受体的激活有促进免疫应答的作用,但是它也会导致真核细胞内翻译起始因子2α的磷酸化,从而导致蛋白质翻译缓慢甚至是被抑制。目前已经有很多研究旨在克服I型干扰素通路激活所导致蛋白质翻译停滞以及mRNA降解的增加。然而目前尚不确定哪种方法会为人类预防疫苗提供更好的基础。 与DNA疫苗一样,mRNA疫苗能够诱导机体的体液免疫和细胞免疫反应。mRNA疫苗体积非常小,只包含了一个选定抗原的开放阅读区域(open reading frame,ORF)并辅以特定的调控元件,因此它们不会像病毒载体疫苗那样诱发机体对疫苗载体的免疫,因此可以进行多次注射。此外,mRNA疫苗可以通过不同的途径使用传统的注射方法(DNA疫苗的注射还需辅以基因枪等设备)。因此,mRNA疫苗为大众提供了一个灵、快速、最具成本效益的选择方案。 总结 艾滋病、埃博拉病毒及寨卡病毒的流行引起了全世界对威胁人类健康的病原体的防范与关注。新发病原体的出现可以促进疫苗研发平台的发展以应对未来疫情的爆发,为预防工作提供动力。新的疫苗研发平台,比如说病毒载体疫苗和核酸疫苗都有其自身的优缺点,这与它们诱导特定免疫反应的能力、生产能力和安全性都有关系。 病毒载体疫苗能够诱导机体对其携带的特定靶抗原产生有效的免疫应答。事实上,许多临床试验已经证明,病毒载体疫苗,比如说VSV-ZEBOV在诱导人类产生保护性反应方面有很大的前景。然而,在非相关病毒环境下进行抗原传递使得这项技术在生产制造方面稍显复杂。DNA疫苗的生产拥有相对简单、完全合成的优势,虽然在DNA载体中存在的非功能性序列引起了监管安全方面的担忧,但是新的DNA疫苗技术已经允许DNA载体只携带目标抗原的核酸序列。 与DNA疫苗一样,RNA疫苗技术支持相对简单,完全合成的制造工艺,可以使用相同的生产工艺和设备制造不同的RNA疫苗。不仅如此,在疫苗安全性方面,RNA疫苗缺乏在基因组中整合的能力,并且也不会如DNA疫苗一样的体内持续存在,这是其一大优势。可是,由于RNA疫苗是上述介绍中最新的一项技术,因此它在人类中的使用还不如前两者突出。幸运的是,迄今为止的临床研究在安全性和免疫原性方面都取得了令人鼓舞的结果,并且为进一步的临床探索提供了强有力的支持。