《化学家发明能改变太阳能储存的技术》

  • 来源专题:可再生能源
  • 编译者: 董璐
  • 发布时间:2015-08-17
  • 化学家已经开发出能够捕捉和留住来自太阳光能量的一重大改进,其中存储的能量比目前的太阳能技术的持续时间可以大大延长——长达数周,而不是如今的屋顶太阳能电池板持续微妙的时间。日期:7.15 2015   来源:加州大学洛杉矶分校

相关报告
  • 《化学家创造出最亮荧光材料 还能收集太阳能》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-08-09
    • 8月6日,研究人员在Cell Press细胞出版社旗下期刊Chem(《化学》)上报告说,通过将带正电荷的荧光染料合成到一种名为小分子离子隔离格(SMILES)的新型材料中,化合物灿烂的光芒可以无缝地转化为固态结晶状态。这一进展克服了长期以来开发荧光固体的障碍,有助于开发目前已知的最亮材料。 “这些材料在任何需要明亮荧光或设计光学特性的技术上都有潜能,包括太阳能收集、生物成像和激光。”美国印第安纳大学化学家Amar Flood说。他与丹麦哥本哈根大学的Bo Laursen均为该论文的资深作者。 “除此之外,还有一些有趣的应用,包括在太阳能电池中对光进行上转换以捕获更多的太阳光谱,用于信息存储和光致变色玻璃的光切换材料以及可用于3D显示技术的圆偏振荧光。”Flood说。 虽然目前有超过10万种不同的荧光染料可用,但几乎没有一种能以可预测的方式混合和匹配,以制造固体光学材料。当染料进入固态时,由于紧密排列在一起时的表现,它们倾向于经历“猝灭”,从而降低荧光强度,产生更柔和的辉光。 “当染料在固体中并肩站立时,染料间的猝灭和耦合问题就出现了。”Flood说,“它们情不自禁地‘触摸’彼此。就像小孩子坐在那里听故事一样,它们互相干扰,不再像个体一样行事。” 为了解决这个问题,Flood和同事们将一种有色染料和含有氰星的无色溶液混合。氰星是一种星形的大环分子,它可以防止荧光分子在混合物凝固时相互作用,保持其完整的光学特性。当混合物变成固体时,SMILES就形成了,然后研究人员将其变成晶体,沉淀成干粉末,最后制成薄膜或直接与聚合物结合。由于氰星大环形成了类似棋盘格的构建块,研究人员只需在格子中插入一种染料,无需进一步调整,结构就会呈现出它的颜色和外观。 虽然,之前的研究已经开发出利用大环分子来分隔染料的方法,但它依赖于彩色大环完成这项工作。Flood 和他的同事发现无色的大环是关键。 “有些人认为无色大环没有吸引力,但是它们允许隔离晶格完全表达染料的明亮荧光,而且不受大环颜色的阻碍。”Flood说。 接下来,研究人员计划探索使用这种新技术形成的荧光材料的性质,以便在未来与染料制造商合作时,实现该材料在各种不同应用中的全部潜力。 Flood说:“这些材料是全新的,所以我们不知道它们的哪些固有特性能够提供更好的功能。我们也不知道材料的极限。因此,我们要从根本上了解它的工作原理,并为其创建新属性提供一套稳健的设计规则。这对于将这些材料交到他人手中至关重要——我们希望寻求众包,并在这方面与他人合作。”
  • 《美科学家大幅提高分解水分子存储太阳能效率》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2016-11-28
    • 美国斯坦福大学一个团队10月31日报告说,他们对通过分解水分子储存太阳能的方法进行了改进,使这种方法的储能效率达到30%,是目前同类方法中最高效的。 这种方法涉及的科学原理并不复杂:首先利用太阳能电池把水分子分解为氧气和氢气,然后在需要时释放上述过程中所储存的化学能,其方式可以是使生成的氧气和氢气重新结合生成水,也可以是在内燃机里燃烧氢气。 这一储能原理早已提出,但如何使其成为高效的工业流程却是一个难题。斯坦福大学一个交叉学科团队在英国《自然·通讯》杂志上发表论文说,他们对上述方法做了三方面改进。首先,他们使用的三结太阳能电池不同于常规硅基太阳能电池。这种太阳能电池由3种不常见半导体材料制成,可以依次吸收太阳光中的蓝光、绿光和红光,将太阳的光能转化为电能的效率提高至39%,而常规硅基太阳能电池的光电转化效率仅为20%左右。 其次,研究人员着重改进了用以分解水分子的催化剂,大幅提高了催化效率。此外,他们将两个相同的电解装置合并起来同时反应,制备出两倍的氢气,而此前这类方法通常只采用一个电解装置。实验表明,改进后的这种方法的储能效率达到30%,超过了24.4%的行业同类方法最高纪录。 斯坦福大学化学工程与光子科学副教授托马斯·贾拉米洛说,这项成果距离把分解水分子这项储能技术发展为实用而可持续的工业流程更近了一步,下一步他们将继续研究如何以成本较低的材料和装置取得相似的储能效率。