《埃安发布弹匣电池2.0技术,首次实现枪击不起火》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2023-05-19
  • 埃安发布弹匣电池2.0技术,首次实现枪击不起火 .
    发布时间:2023-03-31来源:广汽集团
    3月30日,埃安举行了弹匣电池2.0枪击试验发布会,全球首次实现电池整包枪击不起火,首次解决了多电芯瞬时短路、爆裂性破坏等极端环境下的电池安全难题。如果说此前弹匣电池通过针刺试验是“勇攀珠峰”,那么此次发布的弹匣电池2.0通过枪击试验难度则堪比“载人登月”,再次定义了电池安全新标准。 
    针刺到枪击,从冷兵器时代走向热兵器时代
    埃安此次弹匣电池2.0枪击试验是迄今最严苛的电池安全试验,在15米处对预留射击开口的满电电池整包进行射击。相较于大众熟知的针刺试验,枪击试验模拟了更加极致严苛的场景。当子弹穿透电芯时,速度可达针刺的97.5万倍,创口直径是针刺的7-8倍,可瞬间击穿多个电芯并造成热失控和爆裂性破坏。面对如此严苛的挑战,行业主流的磷酸铁锂单体电芯和行业主流磷酸铁锂模组均发生了明显的热失控和燃烧现象,这就意味着,光靠电芯本征特性无法实现真正的安全。而弹匣电池2.0整包枪击后未发生起火和爆炸,拆开电池系统外壳后,整体结构完整,仅有三个电芯爆裂性损坏,静置24小时后温度恢复至常温,顺利通过了枪击试验。这也是全球范围内,动力电池首次在枪击试验中实现不起火、无爆炸。 
    当前国标动力电池安全试验的标准包含针刺、跌落、燃烧、冲击等,其中针刺是最高的电池车规级安全标准,它要求电池在被8mm钢针穿刺后5分钟不起火,此前行业只有不到百分之三的品牌的电池能通过,而2021年发布的弹匣电池是首个能达成三元锂整包不起火的电池技术。此次埃安发布的弹匣2.0,将电池安全测试标准从针刺升级为枪击,这一跨越,堪比冷兵器时代一下子快进到热兵器时代。
    从近两年国家应急管理部发布的自燃数据来看,电池安全依然是行业的痛点和难题。埃安电池研发总监王清泉在发布会上表示,哪怕是千万分之一的风险,也要付出千万倍的努力!埃安之所以会在电池安全技术上不断钻研,一次又一次取得技术突破,这源自于埃安骨子里的信仰——对安全的极致追求。
    三大原创突破性技术,打造极致安全防护
    为了给用户提供极致的电池安全守护,弹匣电池2.0在初代弹匣电池的基础上,突破性研发了超稳电极界面、阻热相变材料、电芯灭火系统等一系列原创安全技术,实现了极致的电池安全防护。 
    对于锂离子电池而言,电极界面是电芯内活性最高的区域。为了加强电极界面的稳定性,弹匣电池2.0开发出“超稳电极界面”技术。通过具有超高稳定性、超高耐热性的纳米陶瓷材料,大幅增加了电极界面韧性;复合集流体材料的应用,可以在热量聚集时快速坍缩,避免持续短路;同时,埃安还在弹匣电池2.0的电解液中加入了耐氧化阻燃剂,高温激活后,可捕获燃烧反应的自由基,断绝持续燃烧的条件。在三重技术的防护下,电芯即便发生热失控,其升温速率也能降低20%。 
    除了提升电池本征安全性,埃安还与中国航天合作,开发了拥有隔热和相变吸热双重功能的阻热相变材料。这种相变材料的相变潜热相对常规材料提升了10倍,能在温度维持不变的基础上吸收大量的热量,配合网状纳米隔热材料,整体的隔热性能大幅度提升40%。另一方面,弹匣电池2.0采用了双层冷却系统,对电芯顶部和底部同时进行冷却,整体冷却效率可提升80%,同时还降低了75%的上壳体温度,进一步保障了电池包上方乘员的安全。 
    对于电池整包有可能会因为外界原因而发生损坏的极端场景,埃安的工程师还为弹匣电池2.0配备了电芯灭火系统。它利用低熔点合金构成了灭火腔,在非常小的高度空间上实现了灭火剂的储存、热失控电芯的自定位和定点喷淋。当电芯发生热失控,大量的灭火剂瞬间精准喷淋到该电芯上。灭火剂可以在吸热气化的同时,捕捉燃烧链式反应的自由基,形成惰性气体氛围,结合埃安的热失控气体排放处理技术,可以消除排气中的火星和99.5%的PM10。这一技术的应用,令弹匣电池2.0成为了唯一自带安全“消防队”的电池技术。 
    除了上述的被动电池安全技术,埃安还基于大数据和AI技术,开发出第六代云端电池管理系统。得益于超过60万台车辆、1300TB的全生命周期应用数据,第六代云端电池管理系统大幅提升了自放电异常、冷却异常、电连接异常、隐性绝缘故障等故障的识别能力,内短路AI识别能力已经达到200Ω级,远高于10Ω的风险线,可实现提前诊断,防患于未“燃”。
    以上技术的应用,让弹匣电池2.0的综合热失控管理能力提升了5倍, 可抵抗多个电芯同时热失控带来的冲击力。
    已迎来技术井喷,科创板独角兽潜力无穷
    比起新能源车企,埃安更是一家科技公司。从初代弹匣电池到弹匣电池2.0,埃安在电池安全领域实现了一次又一次突破,这不仅是因为埃安能从整车安全角度更贴近消费者需求,更关键的是他们在电动技术方面有着长时间的资源投入和技术积累。 
    2022年《福布斯》全球独角兽榜单发布,埃安雄踞各维度榜单榜首。超级独角兽的背后,是埃安早在2011年就开始了电动化技术的研究和应用,如今已组建了一支世界顶尖的电池研发团队,并拥有领先的电池试验室、专业测试场和电池生产车间,是国内极少数兼具先进电池独立设计和生产制造能力的车企。去年,埃安更是投资109亿,成立了因湃电池科技有限公司,专注于前瞻电池技术开发及应用,为打通电池研发、设计、智造、销售和服务链条打下坚实基础。 
    此前有消息传出,埃安全新车型AH8的开发项目,合作模式由与华为联合开发调整为自主开发。作为科创独角兽,埃安不缺乏与华为转变合作模式的底气与实力。自成立以来,埃安始终聚焦EV和ICV全栈自研,埃安已积累了丰硕的科研技术成果。除了在EV领域发布弹匣电池系列、超倍速电池、海绵硅负极片电池、微晶铁锂电池、夸克电驱等核心三电技术,埃安还在ICV领域投入打造了ADiGO智驾互联生态系统,已实现超视距召唤泊车、高速NDA、城市NDA和智能座舱技术的加速迭代升级,去年11月更是发布了全新一代星灵电子电气架构,可通过多融合感知系统,为用户带来全天候的安全智驾体验。此次弹匣电池2.0的发布,不仅重新定义了电池安全的标准,更是埃安作为科创独角兽的有力佐证。 
    正如埃安副总经理张雄在发布会上所言,“推动社会进步,是埃安的不懈追求”。弹匣电池2.0作为电池整包技术,可以匹配长续航、超快充等电池技术,不仅将逐步搭载昊铂实现量产应用,也将以极致的电池安全表现,赋能深潜、航空、航天等领域持续进化,加速实现能源变革。
    如今的埃安具备完整的产业链布局和雄厚的研发实力,技术井喷期也已经到来。当埃安以科技巨头的身份冲刺科创板,留给资本市场的想象空间是巨大的。 .
相关报告
  • 《摩尔精英发布《中国芯片设计云技术白皮书2.0》》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2020-08-16
    • 摩尔精英IT/CAD事业部曾于2019年11月21日的南京ICCAD大会上发表的《 芯片设计云计算白皮书1.0 》中,初步探索了基于公有云的EDA计算平台的实现方案。 随着进一步的探索和方案优化,2020年8月摩尔精英发布《芯片设计云技术白皮书2.0》,进一步升级迭代EDA云计算的实现方案。 在这一稿白皮书中,将基于Azure云平台,呈现包括弹性算力、安全方案、EDA设计生态云模型等。 根据对半导体行业的深入研究和调查,摩尔精英IT/CAD事业部对即将到来的国内半导体行业战略发展面临的云计算平台作出了战略规划,“拥抱云计算,打造适合中国国情的芯片设计云生态模型”。 设计生态云模型 2.1 统一云平台,集成五要素 以云计算为IT基础底层,整合行业核心资源,打造统一的芯片设计云平台,集成包括:IT基础架构层与技术服务、CAD管理与技术服务、EDA资源池与技术服务、IP资源池与技术服务、PDK资源池与技术服务等五大技术支持平台的整合型设计生态云平台。 设计、EDA、IP、PDK在云计算平台上可以各自成云,彼此安全隔离,数据共享可追溯,上传下载加密,形成安全高效的生态设计环境。 2.2 各自上云,永不落地 核心资源包括IP、PDK等,可以在云平台上,拥有各自供应商的私有云空间,数据对设计公司的开放与否,一方面依赖于传统合作协议与商务条约,另一方面依赖于云平台技术安全管控手段。不同角色的用户,例如IP供应商、晶圆厂、EDA公司,对各自的数据拥有完全的管理权限。重要数据在不同隔离区间进行传递,通过数据加密或指纹追踪技术,进行有效的安全监管,对核心数据资源的管控做到各自成云,永不落地。 2.3 云计算三层架构 基于云计算的IT架构包括IaaS层、PaaS层、SaaS层,分别管理物理层资源、物理资源敏捷运维、应用层资源以及应用层资源自助管理。 在设计生态云平台上,安全高效地整合了芯片设计开发所需的全部技术支撑,可以做到对众多芯片设计企业的平台化支持,帮助他们可以短时间内拥有更快更标准统一化的研发平台,从而帮助他们更为容易地加快芯片开发与迭代速度,为产品上市赢取时间。通过设计生态云统一化的平台,更多的IP、PDK和EDA资源可以快速汇集、并提供统一的技术支持窗口,这也能对国内EDA工具及IP的发展起到非常好的促进作用。
  • 《欧洲电池技术创新平台发布电池创新路线图》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2023-11-29
    • 9月26日,欧洲电池技术创新平台“电池欧洲”(Batteries Europe)和“电池2030+”(BATTERY 2030+)计划工作组分别发布《欧洲电池研发创新路线图》和第三版《电池2030+路线图》,旨在为欧洲电池技术未来发展指明方向。 一、《欧洲电池研发创新路线图》 《欧洲电池研发创新路线图》确定了欧洲电池六大研究领域的33 个具体战略研究主题以及17个横向研究主题,并提出这些研究主题在短(2027年)、中(2030年)以及长期(2030年后)的研究内容。 1.新兴技术:该路线图建议对一系列有前途的电池技术进行必要的战略研究,这些技术将对整合可再生能源的进展产生重大影响,并探索能够超越 锂离子电池 限制,具有成本效益和可持续的解决方案。该领域确定了十个战略研究主题,包括先进氧化还原液流电池、金属空气电池、金属硫电池、水基电池、无阳极电池、多价非水系统(multivalent non-aqueous systems)、混合超级电容器电池、多模态多尺度相关表征技术、仿生学、电池材料和电池的可持续性设计;两个横向研究主题是使用廉价、丰富且易于回收的材料制造电池,以及为新兴电池技术加速材料发现和多尺度建模。 2.原材料及其回收:减少原材料依赖和建立欧盟的战略自主权将推动电池原材料生产及其回收。该领域确定了六个战略研究主题包括新型逆向物流解决方案和收集模式、现有回收工艺对新技术的适用性、锂电池的新回收工艺和其他新兴技术、二次原料整合、钠离子和其他新的化学电池供应链、可持续的原材料采购和加工;三个横向研究主题包括可持续性评估工具(参考数据可用性和方法框架)、安全和可持续的设计;利用混合模型优化回收流程的数字孪生。 3.先进材料:材料对实现更具成本效益、性能更好、更安全和更可持续的电池开发至关重要,该领域确定了五个战略研究主题,包括第三代锂电池材料研发(交通)、第四代固态电池材料研发(交通)、长效锂电池材料研发(固定储能)、 钠离子电池 材料研发(交通和固定储能)、钒基氧化还原液流电池材料(固定储能);三个横向研究主题包括可持续性(减少关键材料的使用)、安全性(材料本身以及相互作用产生的人体健康和环境危害)和数字化(采用人工智能发现新的电池材料)。 4.电池设计和制造:该领域着眼于目前欧洲大规模电池生产和未来技术成功所必需的进步,确定了四个战略研究主题:可持续燃料电池设计、电池的可持续生产、柔性生产技术、工艺和产品规模化和产业化;三个横向研究主题包括可持续性(再生原料对电池设计、制造材料选择和应用的影响)、安全性(电池设计、材料选择和可回收性的安全研究)、数字化(可持续设计和制造电池过程的数字孪生)。 5.应用与集成-交通:该领域重点介绍了电池在交通领域应用的关键事项,针对公路、水路、航空、铁路以及非公路机械五大领域提出了必要的战略研究主题,主要围绕相关领域所需的性能开发以及其他关键考虑因素,如系统、安全、回收等;三个横向研究主题包括快速充电、电池更换以及关键指标预测(如电量、健康、温度、功率等)。 6.应用与集成-固定储能:固定储能领域主要包括三个主要的战略研究主题:供电侧(Front-of-the-meter,FTM)的电池储能系统(BESS)、需求侧(Behind-the-meter,BTM)的电池储能系统、中长寿命电池储能;三个横向研究者主题包括数字化(重点是先进的电池管理系统、电池运行的新算法、SoX评估和预测以及决策工具)、可持续性(重点关注二次寿命电池系统)、安全性(电池储能系统的安全性、效率和延长寿命)。 二、《电池2030+路线图》第三版 《电池2030+路线图》第三版是“电池2030+”计划工作组根据目前欧洲实际发展、国际研究进展以及地平线2020、地平线欧洲资助的项目,对原版中的研究方向进行了细化,提出了电池未来可持续发展所需的三大主题的六个研究领域。 1.加速电池界面和材料研究:加速电池界面和材料的研究发现对于确保具有高能量和/或高功率性能的新型可持续材料至关重要,这些材料对不必要的降解反应具有高稳定性。必须特别关注电池中许多材料界面上发生的复杂反应。“电池2030+”倡议利用人工智能(AI)开发电池接口基因组(BIG)-材料加速平台(MAP)倡议,以大幅加快新型电池材料的开发。在该领域的一个核心是开发一个共享的欧洲数据基础设施,该基础设施能够自动采集、处理和使用电池开发周期所有领域的数据。 2.智能功能集成:智能功能的集成将提高电池的使用寿命和安全性。“电池2030+”提出了两种不同且互补的方案来解决这些关键挑战:开发直接在电池单元级别探测化学和电化学反应的传感器,以及使用自愈功能来恢复运行电池单元内损害的功能。 3.交叉领域:交叉领域主要包括电池的可制造性和可回收性。在可制造性领域将重点关注电池、电池组件和材料的制造,研究重点是创新/突破性材料的合成以及在制造过程中电池内部产生的界面效应。在可回收领域将“电池2030+”的目标是过渡到一种基于数据收集和分析的新回收模式,将电池组自动拆卸到电池级别,尽可能重复使用;将电池单元自动拆解以最大限度地增加个性化组件的数量;以及开发选择性粉末回收技术,将粉末修复为电池活性材料,可在汽车/固定应用的电池中重复使用等。