《突破 | 上海光机所在单级充气空芯毛细管光纤可调谐紫外色散波研究中取得进展》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2025-04-30
  • 近期,中国科学院上海光学精密机械研究所超强激光科学与技术全国重点实验室与罗素先进光波科学中心团队在基于单级空芯毛细管光纤的可调谐紫外色散波产生研究中取得进展。

    充气空芯毛细管光纤凭借高损伤阈值、宽带传输窗口、色散与非线性灵活可控等优势,为超快激光脉冲压缩及频率变换等研究提供了理想平台。基于充气空芯毛细管光纤的紫外色散波辐射技术,可将近红外激光高效转换至深紫外(200-300 nm)乃至真空紫外(100-200 nm)波段,并具备波长连续调谐能力,是产生高品质、可调谐紫外飞秒激光的前沿技术。近年来,研究团队系统地开展了空芯毛细管光纤中可调谐紫外色散波辐射研究,取得了一系列创新研究成果,包括成功实现微焦级紫外色散波的高精度时域测量等。

    近期,研究团队系统研究了基于单级空芯毛细管光纤的可调谐紫外超快激光产生机理。实验上使用40 fs钛宝石激光脉冲直接驱动长度1 m、芯径100 μm的充气空芯毛细管光纤,成功获得微焦级的紫外色散波脉冲。通过精准调节光纤内填充气体的种类和气压,可实现185-450 nm波长连续可调谐的超快紫外激光输出。特别在长波长(320 - 450 nm)的色散波产生过程中,采用拉曼活性气体可诱导选择性能量耗散机制:该机制通过定向消耗特定的光谱成分能量,有效抑制非线性演化过程中的脉冲分裂现象,最终获得轮廓平滑的色散波光谱。该研究采用单级光纤架构实现光路高度集成,显著简化了传统紫外色散波产生的复杂系统设计,并且产生的宽带可调谐紫外超快激光有望应用于先进光谱学与质谱学等领域。

    图1 (a) 实验装置,(b) 紫外色散波辐射的相位匹配曲线,(c) 可调谐紫外色散波光谱测量

  • 原文来源:https://opg.optica.org/ol/fulltext.cfm?uri=ol-50-8-2606&id=570048
相关报告
  • 《突破 | 上海光机所在高功率光纤传能方面取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-07-29
    • 近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室在高功率空芯光纤传能研究方面取得新进展。研究团队利用5米长反谐振空芯光纤成功实现了1微米波段千瓦级以上功率的连续激光的长时间柔性传输,相关研究成果以“Laser-induced damage of an anti-resonant hollow-core fiber for high-power laser delivery at 1 μm”为题在线发表于《光学快报》(Optics Letters)。 高功率光纤激光器在机械加工、医疗手术和军事国防领域都有着广泛的应用。受限于传统石英光纤的非线性激光损伤与能量损失,千瓦级以上激光传输一般采用大芯径石英光纤。光纤多模传输条件下,光纤远端激光聚焦尺寸大,光束质量差,根本上限制了其在精密加工等场景中的广泛应用。近些年出现的反谐振空芯光纤将光场束缚于中空的纤芯中,为激光传输提供了一个类似自由空间的环境。反谐振空芯光纤在长距离激光传输中,展现出良好的单模特性(M2<1.3),具有极高的损伤阈值,极低的非线性和色散,成为高功率激光传输新的突破口。 研究人员通过4-f透镜系统将1080 nm大功率工业连续光纤激光器的输出耦合进入5米长的自研反谐振空芯光纤(光纤损耗0.13dB/m@1080nm),实现了千瓦级激光的准单模传输。研究人员设计并制作的水冷耦合端子为空芯反谐振光纤提供高效热管理。在1500W激光入射功率和80%耦合效率下,实现了1kW功率以上的激光长距离光纤传输,且光纤端面无激光损伤。其中1KW入射功率下,反谐振空芯光纤在30分钟之内保持连续激光无损稳定传输。 研究发现了三类空芯光纤的激光损伤机制,初步建立了反谐振空芯光纤高功率连续激光损伤模型。理论估算表明,空气填充条件下的反谐振空芯光纤的连续激光传输功率高达97kW。本项目研究结果为进一步发展和优化微结构空芯光纤激光传能技术打下了坚实的基础。 本研究得到了国家自然科学基金、国际科技合作计划、中国科学院前沿科学重点研究项目、国家科技支撑计划的支持。 图1 (a)反谐振空芯光纤传输损耗测量图(插图为反谐振空芯光纤电镜图);(b) 基于反谐振空芯光纤的千瓦级高功率能量传输实验装置图 图2 基于反谐振空芯光纤的高功率能量传输(a)输出功率与耦合效率随输入功率变化图;(b)输出功率随时间变化曲线(输入功率为1000W) 图3 反谐振空芯光纤理论损伤阈值随耦合效率的变化曲线
  • 《突破 | 西安光机所在超短激光脉冲光场测量研究方面取得重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-04-24
    • 近日,西安光机所阿秒科学与技术研究中心在超短激光脉冲光场测量研究方面取得重要进展。研究团队创新性提出基于微扰的三阶非线性过程全光采样方法,该方法的可测量脉冲脉宽短至亚周期,波段覆盖深紫外到远红外,具有系统结构简易稳定、数据处理简单等优点。相关两项研究成果相继发表在Optics Letters。论文第一作者为特别研究助理黄沛和博士生袁浩,通讯作者为曹华保研究员、付玉喜研究员。 超短激光脉冲作为探索物质微观世界以及产生阿秒脉冲的重要工具,其完整的电场波形诊断尤为重要。目前普遍采用的表征技术广义上可分为频域测量、时域测量两类。在频域,具体有频率分辨光学门控(FROG)、光谱相位干涉法 (SPIDER)和色散扫描(D-SCAN)等主要方法,通过测量非线性过程产生的光谱信息来间接获取超短脉冲脉宽及相位。此类方法因装置简单易于搭建而被广泛采用,但通常需要复杂的反演迭代算法,并且难以获得光电场信息,而且受限于相位匹配机制,比较难以应用于倍频程以上的激光脉冲测量。 而基于时域采样的测量方法通常不受严格的相位匹配限制,并且对电场波形很敏感,可用于直接测量光电场,近年来发展势头较好。研究团队提出基于微扰三阶非线性过程的全光采样方法是一种基于时域采样的测量方法,在实验中分别应用瞬态光栅效应(TGP)和空气三倍频效应(Air-THG),准确的测量了钛宝石激光器输出多周期脉冲(750-850nm,25fs)、基于充气空心光纤后压缩技术(600-1000nm,7.2fs)和双啁啾光参量放大系统(1300-2200nm,15fs)产生的少周期脉冲,实现了覆盖可见、近红外到中红外波段的超短脉冲测量,可以满足不同波段超短脉冲测量的需求。 未来此项进展可以在阿秒驱动源快速诊断、超短激光脉冲测量装置国产化等方面发挥重要作用。 图1 实验装置示意图 图2 可见波段周期量级脉冲测量结果 图3中红外波段周期量级脉冲测量结果