《苏州纳米所在柔性可穿戴电子及其应用方面取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-06-07
  • 当前人工智能快速发展,各种类人功能智能机器人层出不穷, 触觉感知是人类和未来智能机器探索物理世界的基础性功能之一,发展具有触觉功能的仿生电子皮肤柔性感知器件,并实现 器件与柔软组织间的机械匹配性 具有重要的科学意义和应用价值。

      受 指纹能够感知物体表面纹理的启发,中国科学院苏州纳米所张珽研究团队在前期研究基础上( Nano Research 2017, 10(8): 2683-2691 ),采用内外兼具金字塔敏感微结构的柔性薄膜衬底及单壁碳纳米管导电薄膜,设计与制备了具有宽检测范围( 45-2500 Pa )、高灵敏度( 3.26 kPa -1 )的叠层结构柔性振动传感器件 - (图 1b ) 。并 建立了其摩擦物体表面时振动频率与物体表面纹理粗糙度的模型: f = v/λ (图 1 ; v :柔性传感器相对速度运动; f :振动频率; λ :起伏间距即波长)。 该柔性仿生指纹传感器可应用于物体表面精细纹理 / 粗糙度的精确辨别,最低可检测 15 μm×15 μm 的纹路,超过手指指纹的辨识能力( ~50 μm×50 μm )。也能够实现对切应力、及盲文字母等高灵敏检测与识别,这些特性将在机器人电子皮肤的触觉感知、智能机械手等方面有重要潜在应用。相关结果已发表在 Small (2018, 1703902, 1-9; DOI: 10.1002/smll.201703902) ,并被 Advanced Science News 以“ A New Bionic Skin; Makes Sense ”为标题报道(图 2 ),论文第一作者是硕士研究生曹玉东和李铁博士。

      

      图 1. ( a )手指粗糙度触觉感知仿生模型;( b )叠层结构柔性指纹传感器模型;( c )柔性传感器实现仿手指指纹织物纹理响应及其( d )最小粗糙度感知与( e )对盲文字母感知。

      

      图 2 Advanced Science News 对仿生指纹柔性传感器报道

      作为柔性可穿戴电子,器件与柔软组织间的机械不匹配是该领域需要解决的关键科学问题之一。针对上述关键科学问题,近期张珽研究团队报道了一种具有褶皱核鞘结构的纤维状超延展柔性应变传感器,该传感器在全工作范围内有高灵敏度,既可以对微弱应变又可以对大应变有良好的响应。 依据模型 , , ( H : 褶皱振幅, h :鞘层厚度, e pre :纤维核预应变, e c :纤维核材料产生褶皱的临界应变, l :褶皱波长, hs :鞘层单层薄膜的厚度, n :鞘层薄膜层数),通过预拉伸 - 包裹 - 释放策略可控的引入褶皱结构,这些褶皱相互接触构成了额外的接触电流通路(图 3 )。该导电通路会在器件被拉伸的过程中因褶皱分开而发生明显的变化,加之鞘层为对应变敏感的 MWCNT/TPE 复合薄膜,因此该应变传感器在极大的应变范围内( > 1135% )均具有高灵敏度( GF: 21.3, 0%-150%; 34.22, 200%-1135% ) 。这些优异的性能赋予了超延展应变传感器对微小肌肉运动以及大范围的关节运动实时监测的能力,同时也可应用于植入医疗,如用于数字化评定肌腱康复(图 4 )。该研究成果近期发表于 Advanced Science ( DOI: 10.1002/advs.201800558 ),文章第一作者是博士研究生李连辉。

相关报告
  • 《中国科学院苏州纳米所张珽研究员团队在柔性可穿戴电子及其应用方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-06
    • 当前人工智能快速发展,各种类人功能智能机器人层出不穷,触觉感知是人类和未来智能机器探索物理世界的基础性功能之一,发展具有触觉功能的仿生电子皮肤柔性感知器件,并实现器件与柔软组织间的机械匹配性具有重要的科学意义和应用价值。 受指纹能够感知物体表面纹理的启发,中国科学院苏州纳米所张珽研究员团队在前期研究基础上(Nano Research 2017, 10(8): 2683-2691),采用内外兼具金字塔敏感微结构的柔性薄膜衬底及单壁碳纳米管导电薄膜,设计与制备了具有宽检测范围(45-2500 Pa)、高灵敏度(3.26 kPa-1)的叠层结构柔性振动传感器件-(图1b)。并建立了其摩擦物体表面时振动频率与物体表面纹理粗糙度的模型:f = v/λ(图1;v:柔性传感器相对速度运动;f:振动频率;λ:起伏间距即波长)。该柔性仿生指纹传感器可应用于物体表面精细纹理/粗糙度的精确辨别,最低可检测15 μm×15 μm的纹路,超过手指指纹的辨识能力(~50 μm×50 μm)。也能够实现对切应力、及盲文字母等高灵敏检测与识别,这些特性将在机器人电子皮肤的触觉感知、智能机械手等方面有重要潜在应用。相关结果已发表在Small (2018, 1703902, 1-9;DOI: 10.1002/smll.201703902),并被Advanced Science News以“A New Bionic Skin; Makes Sense”为标题报道(图2),论文第一作者是硕士研究生曹玉东和李铁博士。 图1. (a)手指粗糙度触觉感知仿生模型;(b)叠层结构柔性指纹传感器模型;(c)柔性传感器实现仿手指指纹织物纹理响应及其(d)最小粗糙度感知与(e)对盲文字母感知。 图2 Advanced Science News对仿生指纹柔性传感器报道 作为柔性可穿戴电子,器件与柔软组织间的机械不匹配是该领域需要解决的关键科学问题之一。针对上述关键科学问题,近期张珽研究员团队报道了一种具有褶皱核鞘结构的纤维状超延展柔性应变传感器,该传感器在全工作范围内有高灵敏度,既可以对微弱应变又可以对大应变有良好的响应。依据模型, ,(H:褶皱振幅,h:鞘层厚度,epre:纤维核预应变,ec:纤维核材料产生褶皱的临界应变,l:褶皱波长,hs:鞘层单层薄膜的厚度,n:鞘层薄膜层数),通过预拉伸-包裹-释放策略可控的引入褶皱结构,这些褶皱相互接触构成了额外的接触电流通路(图3)。该导电通路会在器件被拉伸的过程中因褶皱分开而发生明显的变化,加之鞘层为对应变敏感的MWCNT/TPE复合薄膜,因此该应变传感器在极大的应变范围内(> 1135%)均具有高灵敏度(GF: 21.3, 0%-150%; 34.22, 200%-1135%)。这些优异的性能赋予了超延展应变传感器对微小肌肉运动以及大范围的关节运动实时监测的能力,同时也可应用于植入医疗,如用于数字化评定肌腱康复(图4)。该研究成果近期发表于Advanced Science (DOI: 10.1002/advs.201800558),文章第一作者是博士研究生李连辉。 图3. (a)纤维状超延展应变传感器的制备流程示意图;(b)器件拉伸光学照片;(c)不同预拉伸条件下得到器件的应变电阻变化曲线;(d)不同预拉伸条件下得到器件的表面形貌;(e)应变传感器拉伸过程中的表面形貌。 图4. (a)由纤维超延展应变传感器制作的手环对手臂做不同动作进行实时监测的电阻变化曲线;(b)纤维超延展应变传感器监测喉咙肌肉的变化曲线;(c)纤维应变传感器绑定于大鼠肌腱上的光学照片;(d)大鼠腿部不同动作的示意图;(e)器件对大鼠腿部动作的响应。 上述工作得到了国家自然科学基金(61574163),江苏省相关人才计划(BK20170008)和中国博后基金(2017M611945)的支持。
  • 《苏州纳米所在仿生人工肌肉研究方面取得新进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-06-26
    •   仿生肌肉纤维在外界刺激下能够产生类生物肌肉的收缩运动,作为一种新型的驱动器,有望推动仿生软体机器人、智能变翼飞行器、可穿戴及可植入医疗技术等方向的创新发展。螺旋仿生肌肉纤维凭借其独特的驱动放大结构可以输出优异的驱动性能。但在收缩前需要对螺旋仿生肌肉纤维施加张力将纤维相邻的螺环分开为其收缩提供空间,而且其回复过程也需要相同的应力将纤维拉回原长,这导致在一个驱动循环过程中螺旋仿生肌肉纤维的净做功为零。   针对上述问题,中国科学院苏州纳米所李清文、邸江涛研究员等报道了一种无预应力、可自回复并能高效循环做功的仿生肌肉纤维。该仿生肌肉纤维以碳纳米管(CNT)纤维的弹性螺旋结构驱动回复,并利用液晶弹性体(LCE)的可逆相变产生驱动形变。所获得的肌肉纤维表现出56.9%的可逆收缩量,1522%/s的收缩速率,7.03 kW kg?1的功率密度和32,000次的稳定循环。  通过连续的浸渍涂覆固化技术实现了复合纤维的连续制备,随后进行并股加捻得到螺旋纤维。其中,CNT纤维表面的沟道初步诱导了液晶分子的排列,加捻进一步诱导液晶分子重排变为相对有序的状态,复合纤维在温度刺激下产生形变。(图1)   经过加捻的复合纤维表面的LCE从无序变为有序,偏光显微镜和WAXS的结果都证明了这一点,加捻后LCE的取向变好,取向因子增加,表明螺旋应力有效诱导了液晶分子的排列(图2)。   目前文献中报道的仿生肌肉纤维在收缩和恢复过程中都需要施加恒应力(图3a,循环Ⅰ),整个过程纤维的净做功为零。本工作开发的纤维在通电时收缩提起负载,断电后无需负载回复到原长(图3a,循环Ⅱ),纤维的净做功大于零。该有效做功特性对于仿生肌肉纤维的应用具有重要意义。对复合纤维加捻使得LCE在CNT沟槽中沿着CNT取向形成液晶态。在电热的作用下液晶高分子链的刚性棒向无序相转变,导致相邻碳纳米管受到应力而解捻,进而产生收缩驱动。在电热驱动训练过程中复合纤维中的CNT纤维骨架被加工成具有螺环张开且扭矩平衡的结构,纤维受热收缩会对CNT纤维骨架压缩进而储存了弹性势能。断电后弹性势能的释放使得复合纤维恢复到原来大螺距、扭矩平衡的结构。这说明本工作中报道的仿生肌肉纤维的回复不需要外力辅助。因此该仿生肌肉纤维实现了有效循环做功。复合仿生肌肉纤维的驱动量高达56.9%,最大做功能力为2.11 J/g,与文献中报道的LCE纤维驱动器相比,该纤维做功能力处于最大值。在自恢复模式下,纤维循环32,000圈后驱动性能依然保持良好,具有优异的循环稳定性。(图3)  基于LCE/CNT螺旋纤维优异的驱动性能及自恢复特性。研究团队将这种高性能的仿生肌肉纤维作为驱动单元与机械结构结合起来,演示了其在类内窥镜上的作用,可以实现内窥镜镜头的三向弯曲。进一步将纤维集束与仿生手臂结合,模仿人的手臂实现了拉车的动作。此外,基于纤维的快速响应特性,利用其瞬间的爆发力,纤维在机械爬虫及踢足球场景下都具有一定的应用潜力。(图4)   相关工作以Pretension-Free and Self-Recoverable Coiled Artificial Muscle Fibers with Powerful Cyclic Work Capability为题发表在ACS Nano上。论文第一作者为中国科学院苏州纳米所硕士生崔波,通讯作者为邸江涛研究员和李清文研究员。该工作得到了国家重点研发计划和国家自然科学基金等项目的支持。