《力学所等在超声速螺位错研究中取得进展》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-04-06
  • 日前,中国科学院力学研究所、上海交通大学和浙江大学的团队在晶体材料中的基本缺陷——螺位错在变形过程中的超声速现象研究方面获得进展。他们发现面心立方晶体材料中的螺位错不仅能超声速,并能稳定地以声速运动。相关结果以Supersonic Screw Dislocation Gliding at the Shear Wave Speed 为题发表在《物理评论快报》(Physical Review Letters 122,045501(2019))上。

      金属晶体的强度跟韧性很大程度上取决于位错的运动性质,特别是螺位错在材料的强度和变形能力中扮演重要角色。然而位错的速度极限和确切的速度–应力关系尚不明确。传统理论认为位错超声速运动所需能量具有奇异性,尽管后续的理论和模拟研究都表明位错可以超声速运动,但这些研究集中于刃位错。该团队利用分子尺度计算和理论分析,发现铜晶体中的螺型全位错和螺型孪晶界不全位错都能稳定地以声速滑移,并都能超声速运动(超过三个各向异性剪切波速,如下图中的三个马赫锥所示)。由于螺位错运动过程存在结构不稳定性,超声速螺位错还是首次被模拟发现。同时,他们的工作表明,位错的运动还与非施密特应力(不贡献分解剪应力RSS)有关,与传统施密特原理相悖。这项研究推翻了传统连续介质力学中对超声速位错的认知,确认了超声速螺位错的存在。该研究结果为晶体材料的动态力学行为,以及孪晶界面的位错运动提供了更深入的理解。

      力学所博士彭神佑为论文第一作者,研究员魏宇杰为通讯作者。论文作者还包括上海交大教授金朝晖、中国科学院院士杨卫。该项目得到国家自然科学基金(Grants NO.11425211和NO.11790291)和中国科学院战略性先导科技专项(XDB22020200)的支持,计算模拟得到中国科学院超级计算中心支持。

相关报告
  • 《抗植物病毒先导化合物研究中取得新进展》

    • 编译者:季雪婧
    • 发布时间:2024-10-29
    •     植物在长期进化过程中,形成了针对害虫和病原微生物的防御体系,探索其化学本质,就有可能发现和研制出靶点更加精准、高效、无毒副作用的先导化合物和新型绿色农药。中国科学院昆明植物研究所郝小江研究员带领的研究团队,20余年来,一直从事具有化学防御功能的植物天然产物的发现及其作用机制研究。     孕甾烷C21甾体是该专题组首次发现的抗烟草花叶病毒(TMV)先导化合物(PNAS,2007,104 (19),8083–8088)。然而,孕甾烷C21甾体的结构修饰以及修饰后化合物的结构-活性关系(SAR)及作用机制尚未得到评估。为此,该研究设计并合成了一系列glaucogenin A和C衍生物。活性测定显示,大多数新设计的衍生物其抗病毒活性以钝化为主,其钝化活性显著优于一线农药宁南霉素。SAR分析进一步揭示了3位的取代以及C-5/C-6和C-13/C-18的双键对于维持高抗TMV活性至关重要。此外,这些衍生物不仅降低了TMV外壳蛋白?(TMV-CP)?基因转录和TMV-CP蛋白表达水平,还下调了热休克蛋白NtHsp70-1和NtHsp70-061的表达。随后的分子对接实验表明,衍生物还可与TMV外壳蛋白相互作用,干扰病毒组装。该项研究阐明了孕甾烷C21甾体抗烟草花叶病毒功能是以钝化为主,并可通过多种途径发挥其抗TMV功能。其结果为靶标寻找,以及设计、合成新的候选农药奠定了基础。     目前,研究成果以Design,?Synthesis,?Anti-TMV?Activity,?and?Structure?Activity Relationships?of?Seco-pregnane?C21?Steroids?and?Their?Derivatives为题以封面文章形式发表在Journal of Agriculture and Food Chemistry。专题组毕业的博士生晏英(现为贵州医科大学副教授)以及贵州医科大学的唐攀为共同第一作者,中国科学院昆明植物研究所郝小江研究员、邸迎彤研究员、贵州医科大学汤磊教授为共同通讯作者。
  • 《合肥研究院在透明导电氧化物薄膜研究中取得系列进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-07-30
    •         近期,中国科学院合肥物质科学研究院固体物理研究所功能材料研究室在透明导电氧化物(transparent conducting oxide, TCO)薄膜研究方面取得系列进展,相关成果相继在Advanced Electronic Materials (Adv. Electron. Mater. 4, 1700476 (2018)),Journal of Materials Chemistry C (J. Mater. Chem. C 5, 1885 (2017)),Chemical Communications (Chem. Commun. 50, 9697 (2014))等杂志上发表。   一般而言,材料的透明特性和导电性互不兼容。自然界中透明的物质(如玻璃)往往不导电,导电的物质(如金属)往往不透明。实现透明性和导电性共存的主要措施是选择宽禁带半导体或绝缘体以确保可见光区的高透明性,再通过元素掺杂来引入载流子以实现导电性。按照该方法可实现具有高可见光区透明性和良好导电性共存的一类非常重要的材料体系即TCO。迄今,TCO薄膜已广泛应用于平板显示、太阳能光伏电池、触摸屏和发光二极管等领域。   TCO材料根据导电载流子的类型分为n型即电子导电型和p型即空穴导电型。在n型TCO方面,近来有相关报道表明,宽带隙钙钛矿BaSnO3基TCO表现出很高的室温载流子迁移率,因而有望取代广泛应用的锡掺杂氧化铟(In2O3:Sn, ITO)成为下一代TCO材料。固体所研究人员基于溶液法制备出了钙钛矿BaSnO3薄膜,经La元素掺杂及薄膜位错密度调控,获得了具有与真空法制备的BaSnO3薄膜相比拟的室温载流子迁移率(~23 cm2/Vs),且可见光透过率超过80%,并提出氧空位是决定该体系载流子迁移率的重要调控因素。相关结果发表于Applied Physics Letters (Appl. Phys. Lett. 106, 101906 (2015))。进一步,科研人员通过在Sn位Sb掺杂提高了薄膜的载流子浓度,实现了薄膜电导率的大幅提升,构建了BaSnO3基薄膜溶液法生长机理与光电性能的关联。相关结果发表于ACS Applied Energy Materials (ACS Appl. Energy Mater. 1, 1585 (2018))。   与n型TCO相比,p型材料的性能和应用远落后于n型材料体系。这源于金属氧化物的电子结构与能带结构:金属氧化物中的金属原子与氧原子以离子键结合,氧的2p能级远低于金属的价带电子能级。由于氧离子具有很强的电负性,对价带顶的空穴具有很强的局域化束缚作用,从而即使在价带顶引入空穴,也将形成深受主能级,导致空穴载流子很难在材料中移动。理论设计已表明在铜铁矿体系中可获得透明和p型导电共存。而Ag基和Cu基铜铁矿相比较而言,具有更宽的光学带隙及更低的光吸收系数。但由于Ag2O易于分解,导致Ag基铜铁矿无法在开放系统中成功制备。固体所研究人员基于溶液法首次在开放系统中成功制备了Ag基p型铜铁矿AgCrO2薄膜。该薄膜表现出(00l)晶面自组装生长特征,且表现出较高的室温电导率及可见光透过率。相关结果发表于Journal of Materials Chemistry C (J. Mater. Chem. C 5, 1885 (2017)),并被选为封面及2017年度热点文章。   此外,研究人员基于电子-电子关联作用可有效调节材料的能带结构和电子结构,设计并制备了两种新型p型TCO薄膜。采用溶液法制备了强关联Bi2Sr2Co2Oy薄膜,该薄膜表现出优良的p型透明导电特征,室温电导率超过222 S/cm,可见光区透过率超过50%。相关结果发表于Chemical Communications (Chem. Commun. 50, 9697 (2014))。采用脉冲激光沉积制备了一种新型p型透明导电氧化物薄膜材料——钙钛矿结构La2/3Sr1/3VO3。在该薄膜材料中实现了导电性和光学透过率的良好平衡,获得了截至目前最高的透明导电优值。相关结果发表于Advanced Electronic Materials (Adv. Electron. Mater. 4, 1700476 (2018)),并被选为卷首插页。