《超快全光开关泵推探针:以纳米石墨烯分子为例》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-12-21
  • 在过去的二十年中,三束泵浦探针(PPP)技术已经成为研究分子多维构型空间的一种成熟工具,因为它允许披露关于被激发分子的多种且通常是复杂的失活途径的宝贵信息。从光谱的角度来看,这种工具显示详细信息的效率两代和构象在π共轭分子和大分子应承担的放松。此外,利用共轭材料中受激发射和电荷吸收之间的光谱重叠,PPP可以有效地调制共轭材料中的增益信号。然而,共轭聚合物在强光激发下的相对较低的稳定性是其在塑料光纤(POFs)和信号控制应用中的一个关键限制。实现超快,购买力平价的角色都应承担的光学开关π共轭系统突出显示。此外,还报道了一种新合成的纳米烯分子dibenzo[hi,st]ovalene (DBOV)的光开关实验新数据。DBOV和石墨烯纳米结构具有优越的环境和光稳定性,在POFs和信息通信技术中具有良好的应用前景。

    ——文章发布于2018年12月19日

相关报告
  • 《基于纳米金/石墨烯修饰的超灵敏己二烯雌酚电化学生物传感器》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-23
    • 基于纳米金/石墨烯修饰的超灵敏己二烯雌酚电化学生物传感器.   编号: SBJS00631   篇名: 基于纳米金/石墨烯修饰的超灵敏己二烯雌酚电化学生物传感器   作者: 张洁[1] ;吴珺[2] ;王传现[1] ;邵科峰[2] ;陈昌云[2] ;赵波[2]    关键词: 纳米金 石墨烯 复合纳米材料 电化学生物传感器 己二烯雌酚   机构:  [1]上海海洋大学食品学院,上海201306; [2]南京师范大学化学与材料科学学院,南京210097    摘要:  利用纳米金/石墨烯复合纳米材料以及己二烯雌酚小分子修饰电极,研制了一种新型的超灵敏己二烯雌酚复合纳米电化学生物传感器;制备了己二烯雌酚抗原和多克隆抗体;并以K_3Fe(CN)_6为探针,利用己二烯雌酚抗体与半抗原之间的竞争反应实现了对己二烯雌酚的超灵敏电化学免疫检测。结果表明:纳米金/石墨烯复合纳米材料具有优异的增敏性和可修饰性。研制的复合纳米电化学生物传感器具有很高的检测灵敏度,己二烯雌酚质量浓度在1~6 000 ng/m L的范围有良好的线性关系,检测限可达到0.05 ng/m L;传感器修饰己二烯雌酚小分子具有简...
  • 《使石墨烯发光的策略》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-05-06
    • 比铝更轻,比金刚石更硬,比橡胶更有弹性,比钢更坚韧。这些只是石墨烯的一小部分特征,石墨烯是一种超级材料,可作为优良的导热体和导电体。由于其特性,它被要求成为研究,电子,IT和医学领域未来技术进步的关键参与者。 科尔多瓦大学的FQM-346有机化学研究小组提出了这种材料以发光方式发挥作用的方式,这是以前没有的新功能,现在引入了一系列新应用。该研究的作者之一FranciscoJoséRomeroSalguero教授解释说,发光是某些物质的特征,它们允许它们以不同于它们吸收波长的波长发光。换句话说,发光材料可以从能量发射可见光,这使得它们可用作可以在大分子和生物材料中显示的光催化剂和荧光标签。现在,由于这项新的研究,发光被添加到石墨烯可以提供的一长串服务中。 该研究发表在化学 - 欧洲期刊上,由欧洲主要化学学会赞助,还涉及UCO研究人员Juan Amaro Gahete,CésarJiménez-Sanchidrián和Dolores Esquivel以及另一个比利时研究小组的工作。由于其相关程度,该期刊将该文章描述为一篇热门论文。 虽然以前曾试图赋予这种超级材料光性能,但所有这些都是不成功的。石墨烯真正特别之处在于它的六边形结构基于高度粘结的碳原子,通过一种三明治形状的电子云。研究员Francisco Romero解释说,如果这个云中原子之间的连接中断,部分属性就会丢失。 具体而言,克服这一障碍是研究成功的地方。该小组能够在不影响其他品质的情况下将发光结合到这种材料中,从而保护其复杂结构的功能。为了做到这一点,铕被整合到石墨烯中。铕是一种与这种超级材料的改性分子完美配位的金属,是赋予它发光性能的金属。 该结果提供了即时应用,因为该发光石墨烯可用于生物材料和用于分析组织细胞。然而,研究更进一步。使用铕“只是一个概念测试,”科尔多瓦大学教授CésarJiménez-Sanchidrián解释道。 从此以后,这项研究打开了使用各种化学元素的大门,这些化学元素可以与石墨烯结合,赋予其新的特性。例如,如果集成某些种类的金属,则可以产生磁性石墨烯。归根结底,这个属于大学纳米化学研究所(西班牙语缩写为IUNAN)和科学学院的研究小组将继续致力于将新属性添加到列表中。石墨烯的品质。这样做会增加这种具有非常有前途的特性的物质的多功能性,并且已经获得了被称为未来材料的权利。、 ——文章发布于2019年4月30日