《BioRxiv,3月12日,Inhibition of SARS-CoV-2 infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-13
  • Inhibition of SARS-CoV-2 infection (previously 2019-nCoV) by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion

    Shuai Xia, Meiqin Liu, Chao Wang, Wei Xu, Qiaoshuai Lan, Siliang Feng, Feifei Qi, Linlin Bao, Lanying Du, Shuwen Liu, Chuan Qin, Fei Sun, Zhengli Shi, Yun Zhu, Shibo Jiang, Lu Lu

    doi: https://doi.org/10.1101/2020.03.09.983247

    Abstract

    The recent outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 infection in Wuhan, China has posed a serious threat to global public health. To develop specific anti-coronavirus therapeutics and prophylactics, the molecular mechanism that underlies viral infection must first be confirmed. Therefore, we herein used a SARS-CoV-2 spike (S) protein-mediated cell-cell fusion assay and found that SARS-CoV-2 showed plasma membrane fusion capacity superior to that of SARS-CoV. We solved the X-ray crystal structure of six-helical bundle (6-HB) core of the HR1 and HR2 domains in SARS-CoV-2 S protein S2 subunit, revealing that several mutated amino acid residues in the HR1 domain may be associated with enhanced interactions with HR2 domain.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.03.09.983247v1
相关报告
  • 《Nature,4月7日,SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-04-08
    • SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion Xinling Wang, Wei Xu, Gaowei Hu, Shuai Xia, Zhiping Sun, Zezhong Liu, Youhua Xie, Rong Zhang, Shibo Jiang & Lu Lu Cellular & Molecular Immunology (2020) COVID-19, the novel coronavirus disease caused by SARS-CoV-2 and outbroken at the end of 2019 in Wuhan, China,1 becomes a worldwide pandemic. SARS-CoV-2 belongs to the betacoronavirus genus and has 79.5% identity to SARS-CoV. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as its host entry receptor.2 The clinical manifestations of COVID-19 include pneumonia, diarrhea, dyspnea, and multiple organ failure. Interestingly, lymphocytopenia, as a diagnostic indicator, is common in COVID-19 patients. Xiong et al. found upregulation of apoptosis, autophagy, and p53 pathways in PBMC of COVID-19 patients.3 Some studies reported that lymphocytopenia might be related to mortality, especially in patients with low levels of CD3+, CD4+, and CD8+ T lymphocytes.
  • 《Nature,6月12日,The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-14
    • The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin Shuai Xia, Qiaoshuai Lan, Shan Su, Xinling Wang, Wei Xu, Zezhong Liu, Yun Zhu, Qian Wang, Lu Lu & Shibo Jiang Signal Transduction and Targeted Therapy volume 5, Article number: 92 (2020) Cite this article The rapid spread of SARS-CoV-2 (also known as 2019-nCoV and HCoV-191), a novel lineage B betacoronavirus (βCoV), has caused a global pandemic of coronavirus disease (COVID-19). It has been speculated that RRAR, a unique furin-like cleavage site (FCS) in the spike protein (S), which is absent in other lineage B βCoVs, such as SARS-CoV, is responsible for its high infectivity and transmissibility.2 A coronavirus (CoV) infects the target cell by either cytoplasmic or endosomal membrane fusion. No matter what path it chooses, the final step of viral entry involves the release of RNA into the cytoplasm for replication. Therefore, the fusion capacity of the CoV-S is a leading indicator of infectivity of the corresponding virus. Consisting of S1 receptor-binding subunit and S2 fusion subunit, CoV-S needs to be primed through cleavage at S1/S2 site and S2′ site in order to mediate the membrane fusion (Fig. 1a). Previous studies have shown that an insertion of FCS consisting of multiple basic amino acids in the cleavage site of the haemagglutinin (HA) is associated with high virulence of influenza viruses.3 Coincidentally, phylogenetic analysis of SARS-CoV-2 identified an insertion of RRAR (FCS) at the S1/S2 site of SARS-CoV-2-S, which is absent in SARS-CoV and other SARS-related coronaviruses (SARSr-CoVs), particularly RaTG13, which has 96% identity of its genomic sequence to that of SARS-CoV-2 (Fig. 1b and Supplementary Fig. S1). Therefore, it has been speculated that this unique FCS may provide a gain-of-function, making SARS-CoV-2 easily enter into the host cell for infection, thus efficiently spreading throughout the human population, compared to other lineage B betacoronaviruses.2