《英特尔布局AI全栈式解决方案 能解决哪些实际问题?》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-04-17
  • 以“应用人工智能”为主题,英特尔与O’Reilly联合主办的中国人工智能大会在北京举行,英特尔在会上分享了人工智能实际应用方面的技术和最新创新成果,展示了人工智能全栈解决方案,分享了如何利用英特尔人工智能产品和技术深入挖掘不同行业数据价值,解决实际问题,加速人工智能产业落地的洞察和实践经验。

    英特尔技术专家还在大会上发表了题为“人工智能如何推动医疗现代化”的演讲,阐述了人工智能如何为医疗行业提供新洞察并提高诊断效率。此外在题为“基于深度学习的自然语言处理”的演讲中,英特尔分享了人工智能如何推动自然语言处理的发展并惠及各行业。

    英特尔正部署人工智能全栈式解决方案

    “英特尔正在不断推动技术和产品创新,以简化和加速人工智能的部署与发展。”英特尔人工智能事业部副总裁、人工智能实验室和软件总经理Arjun Bansal表示:“英特尔拥有业内广泛的人工智能产品组合,持续加大技术研究投资和人才培育,通过与生态产业合作伙伴携手,让人工智能加速在医疗、零售、能源、交通、制造等各行业尽快落地。”

    目前,英特尔已经部署了人工智能全栈式解决方案等一系列产品组合,智能菌梳理如下:

    至强可扩展处理器、英特尔Nervana神经网络处理器和FPGA、网络以及存储技术;

    针对深度学习/机器学习而优化的基于英特尔架构的数学函数库(Intel MKL)以及数据分析加速库(Intel DAAL);

    支持和优化开源深度学习框架如Spark、Caffe、Theano以及Neon;

    构建以英特尔Movidius和Saffron为代表的平台等等。

    此外,英特尔还表示,为更好的推动人工智能技术普及,英特尔还联手百度云等合作伙伴安排了培训等课程,让开发者们更好地了解BigDL等框架。BigDL是一款基于Apache Spark的分布式深度学习框架,它可以无缝的直接运行在现有的Apache Spark和Hadoop集群之上。百度云在即将发布的数据分析平台中将整合BigDL最新版本。未来英特尔还将联合百度云智学院推出完整的“数据分析+BigDL”培训课程。

    用人工智能解决医疗行业的三大挑战

    人工智能正在不断推动医疗行业现代化发展,目前在医疗行业主要有三大挑战,第一是数据量特别大,而且不断地增加;第二是中国临床医生太少,不足以满足中国人民群众的需求;第三是人们看病要花费高额的时间和成本。

    英特尔人工智能事业部副总裁、人工智能实验室和软件总经理Arjun Bansal称,英特尔的的目标是解决这三大类的问题和挑战。通过深度学习处理大数据,用海量的数据来进行学习和训练。关于医生人数不够多的问题,Arjun Bansal透露,目前英特尔也搭建了一些解决方案和系统来做一些特定疾病的检测,比如说做一些电子病历的存档和分析,为医生提供一些辅助服务。在成本方面,英特尔制定了专门具体的解决方案,比如做大量的内容筛选。

    Arjun Bansal表示,目前CT扫描、核磁共振的应用都可以在至强处理器上完成,英特尔正在扩大使用范例。同时,英特尔还搭建了专门的硬件和软件的支持来做推理、收集和分析数据。“英特尔希望能够为客户定制化模型和产品,然后在特定领域,比如在金融、医疗、零售领域为我们的客户提供精专化的服务,尤其对于中国客户。”

    面对AI是否将取代医生的工作?Arjun Bansal认为,AI技术是为了能够提升医生、护士的工作能力,比如说他们可以看更多的病人、提高工作效率、提高诊断的准确性。人类医生和机器AI合作,这是我们目前的主攻方向。

    人工智能如何推动自然语言处理的发展?

    今年以来,利用深度学习,自然语言处理领域出现了很多的成果,比如年初阿里、微软在斯坦福举行的SQuAD 挑战赛(Stanford Question Answering Dataset),机器表现就超过了人类。前端时间,微软宣布其研发的机器翻译系统在通用新闻报道测试集newstest2017的中-英测试集上,达到了可与人工翻译媲美的水平。

    那么,这是不是意味着机器在自然语言处理上很快就能落地应用?

    答案是否定的。英特尔人工智能事业部数据科学部主任刘茵茵称,SQuAD就好比自然语言处理领域的ImageNet,它是一个大型的数据库,可以为很多研究人员、开发人员提供一个平台,不断地开发新算法,并且比较各种各样算法的优劣势。但这仍不能够迅速地将科研成果使用到应用场景中,还需要经过一段时间的提升和优化,同时还需要各种各样的软件、硬件配合在一起才能实现新的商业方案。

    刘茵茵,从学术创新到商业方案,虽然现在的发展十分迅速,但仍需要一个过程,SQuAD和自然语言处理也是一个非常关键和激动人心的部分。近来,很多软件和算法性能得到了提高,并开始解决一些复杂自然语言处理的模型和应用。但是可能还是需要一段时间来整合软件和硬件的配合,进而更好地应用到商业领域。

    总之,数据洪流带来巨大机遇和挑战,多种多样的应用需求需要不同的解决方案和技术来满足,人工智能也是如此。纷繁复杂的工作负载也需要不同类型和特点的人工智能产品来支撑。

相关报告
  • 《ISSCC 2025:英特尔Navid Shahriari:AI时代创新矩阵》

    • 来源专题:集成电路与量子信息
    • 发布时间:2025-02-18
    • 据芯思想(Chipinsights)微信公众号2月18日报道,英特尔新上任的代工技术开发高级副总裁Navid Shahriari日前出席ISSCC2025并发表主题为“AI时代创新矩阵”全体会议演讲。 Navid Shahriari在演讲中描述了一系列技术,这些技术使该行业能够在从芯片到系统的各个层面取得显著进步。 人工智能浪潮袭来 人工智能为人类带来了变革潜力,增强了人类解决复杂问题的能力、速度和准确性的问题,以及解锁创新和理解。人工智能的闪电般快速发展是历史上前所未有的,这需要从低功耗和边缘AI设备到基于云的系统级快速发展并且在连接它们的通信网络中。对快速AI的需求系统扩展正在推动硅、封装、架构和软件。本演示文稿描述了赋予行业权力的技术矩阵从芯片到系统,在各个层面都取得了显著进展。 人工智能为人类带来了变革潜力,增强了我们快速准确地解决复杂问题的能力,并开启了创新和理解的新领域。人工智能的闪电般快速发展是历史上前所未有的,需要在系统层面迅速发展,从低功耗和边缘人工智能设备到基于云的计算,以及连接它们的通信网络。这种对快速AI系统扩展的需求正在推动硅、封装、架构和软件的创新前沿。 人工智能(AI)的快速发展正在推动传统计算技术的发展到其极限,需要可持续和节能的解决方案,以指数级扩展并行计算系统。计算行业必须满足日益增长的需求计算能力、内存带宽、连接性、高性能基础设施,以及所有领域的人工智能。 如图所示的技术矩阵,从软件和系统架构到硅和封装,每个领域的进展都是必要的,但整个系统必须共同优化,以最大限度地提高性能、功率和成本。强大的生态系统合作伙伴关系和新颖的设计方法论对于有效的协同优化和更快的上市时间至关重要人工智能变革潜力的舞台。 硅的发展 硅缩放(Silicon scaling)一直是半导体产业进步的根本驱动力,也是创新矩阵的基石。硅路线图得益于非增量晶体管和互连架构的进步、高NA EUV光刻机以及相关的掩模和建模解决方案。每一代技术的功能扩展和改进都以设计技术协同优化(DTCO)过程为指导,该过程设定并推动逻辑、存储器和模拟/混合信号功率、性能、面积(PPA)和成本扩展的整体目标。设计和工艺技术之间的这种迭代循环对于实现持续的硅缩放效益至关重要。 Ribbon-FET是一种全栅极晶体管,超越了FinFET架构,提供了性能扩展和工作负载灵活性。变化的Ribbon宽度在同一技术基础上为不同性能和效率需求提供了定制解决方案。 Power Via是一种高产量的背面电源传输技术,将电源传输集成到晶体管中,将IR压降减少5倍,并为信号路由提供额外的正面布线。它满足所有JEDEC热机械应力要求,零故障,在硅中显示出超过5%的频率效益。英特尔18A是英特尔领先的工艺节点,将提供业界首个RibbonFET和PowerVia技术的组合。 High NA EUV实现了灵活的设计规则,减少了寄生电容并提高了性能。它通过降低设计规则的复杂性和对多模式的需求,简化了电子设计自动化(EDA)的各个方面。Intel 14A正面互连针对高NA单次曝光图案化进行了优化,提高了产量和可靠性。 赋能AI构建全场大型应用高NA EUV工具的成像场尺寸较小,但英特尔已经开发出跨边界电缝合芯片的解决方案。EDA生态系统正在创建支持这一点的工具,掩模生态系统正在努力实现无需十字线拼接的全场尺寸能力,将生产率提高23-50%。 高NA EUV光刻需要先进的建模和掩模解决方法。英特尔使用人工智能和机器学习来实现准确性,同时管理计算成本。曲线掩模提高了图案空间利用率、工艺窗口,并显著降低了可变性。 封装 随着数据处理需求的增长,在更小的区域内以更低的能耗实现更高的计算能力至关重要。3DIC技术通过异构集成降低了成本和占地面积,通过更高的带宽提高了性能,并通过垂直堆叠降低了功耗。高级节点上的基片对于实现硅通孔(TSV)和高级接口、无缝集成3D元件至关重要。 封装上的垂直和横向互连必须继续扩展,为带宽增长和提高能效提供更高的互连密度。具有成本效益的互连扩展,结合使用基于标准化的链接,如UCIe,对于创建一个即插即用的小芯片生态系统至关重要,该生态系统将实现产品多样性和定制。成熟使用玻璃来缩放封装基板互连几何形状、尺寸和信号特征是一个重要的技术载体。 必须通过提高系统级功率传输效率和通过组件和系统级创新扩大热包络来解决人工智能应用对不断增长的功率需求。 随着特征尺寸和制造工艺的重叠,先进的封装技术正在以一种封装和硅后端互连之间的边界越来越模糊的方式发展。此外,该包变成了一个复杂的异构结构。制造和测试过程必须不断发展,以确保产量保持较高水平。 一个模块化设计环境,允许直接组装多硅共封装系统,优化成本、性能和带宽,这一点至关重要。需要全面的EDA工具和流程功能来跨管芯进行设计划分,实现成功的协同设计以及管芯和封装的优化。目前的3DIC设计流程缺乏热应力和机械应力建模,导致潜在的故障和影响上市时间的重新设计工作。3DIC设计工具必须涵盖实施、提取、可靠性和验证,以确保无缝集成。 互连 并行AI工作负载的指数级扩展给互连带宽密度、延迟和功耗带来了压力。通过将组件与密集的2.5D和3D装配技术更紧密地集成,所有这三个指标都得到了改善。新的封装技术通过最大限度地减少GPU之间非常昂贵的(在成本和功耗方面)互连,提供了更好的总体拥有成本(TCO)。传输每个数据比特的能量随信道损耗而变化。这种权衡推动了低功耗、高密度封装内通信的UCIe等行业规范的定义。UCIe在<1pJ/bit的情况下,每毫米管芯周长可达1.35TB/s。 主板和机架内的较长互连构成了扩展网络拓扑中的高带宽域,需要增加数据序列化以考虑实际的连接器信号密度,从而扩展聚合带宽。串行全通道数据速率每3-4年扩展2倍,包括以太网、PCIe和OIF-CEI等行业规范。最新生产的有线SerDes已达到212Gb/s PAM4,支持4-6pJ/bit的机架内(约1米范围)通信。模拟电路和数字均衡的每比特能量都继续受益于工艺技术的扩展。 随着有线互连数据速率的不断扩大,由于更高符号率下的信道损耗更高,SerDes重定时器之间可以桥接的距离减小。添加更多的重定时器可以扩展覆盖范围,但会增加功耗、延迟和成本。这种经验权衡导致了从海底电缆到机架到机架网络的一系列应用中采用了光互连。此外,使用光学器件将高带宽域的范围扩展到机架之外与人工智能的扩展网络战略相一致。因此,光学互连需要移动到机架中以扩展带宽,并达到可接受的功率包络。 正在开发诸如共封装光学器件(CPO)和直接驱动线性光学器件等技术来实现这一转变。英特尔最近展示了一个基于英特尔内部硅光子学技术和224Gb/s PAM4的4Tb/s(每个方向8根光纤×8个波长/光纤×2Gbps/波长)双向全集成光计算互连(OCI)小芯片,该芯片在23km光纤上具有直接驱动线性光学元件。全行业正在努力加快这一机架内光互连生态系统的发展,开发高产量的制造工艺、材料和设备,同时提高带宽密度、总功率、可靠性和成本。 电力输送 像AI这样的并行工作负载的每包功耗正在迅速扩大。为封装供电的一种常见方法是主板电压调节器(MBVR)。这些调节器将板级电源(例如12V)降压至封装上的管芯所使用的电压(VOUT)。无论是位于封装旁边(横向MBVR)还是封装下方(垂直MBVR),MBVR提供的电流密度都无法跟上未来高性能芯片的步伐。此外,调节器效率随着功率和电流的增加而降低(I2R损耗),从而降低了系统性能。需要解决方案,使电压转换更接近具有高电流密度、转换效率和调节带宽的管芯。 一种解决方案是使用完全集成的电压调节器(FIVR),将功率转换的最后一步带到封装上。在封装上进行最终电压降压可以通过降低给定功率的电流来减少将电源轨布线到封装上时的能量损失。十多年前,英特尔首次在Haswell产品中引入FIVR,使用密集的片上电容器和空心封装电感器。 第一代FIVR将1.8V输入电源轨转换为多个管芯上电压域。在过去的十年中,这种架构已被用于许多产品中,并不断改进,如更密集的封装内磁电感器和片上电容器。除了集成到SoC中的FIVR外,英特尔还开发了一种基于CMOS的独立2.4V IVR小芯片,该芯片使用英特尔的高密度电容器(HDMIM)技术开发了一个具有连续可扩展电压转换比的开关电容电压调节器(SCVR)。 使用现有的MBVR架构,封装功率容量进一步扩大到1-2kW以上,将导致稳压器效率出现不可接受的下降。通过将高压(12V)电源转换集成到封装上,可以缓解这个问题。12V稳压器集成将减少输送到封装中的电流,从而降低I2R损耗。一种有前景的方法是将封装上的高压(12V)开关电容电压调节器(SCVR)与较低电压(1.8-2.4V)IVR配对,进行两步转换。这种两步架构的功率密度和效率依赖于密集的封装无源器件,如嵌入式深沟槽电容器(eDTC)和磁电感器,以及密集的管芯上电容器。 使用氮化镓(GaN)等宽带隙工艺技术可以使高压转换器比硅基解决方案具有更高的效率和密度。然而,功率转换器的封装实现需要更高的开关频率和集成驱动器,这在纯GaN工艺上是不支持的。用硅CMOS制造GaN器件可以为高压功率转换器的封装集成开辟更多机会,因为它可以在同一芯片上设计CMOS驱动器和GaN功率FET。为此,英特尔最近展示了一种将硅基氮化镓技术结合在同一个300mm晶片上的技术。该技术可以支持输入电压高达12V的高压IVR选项,使功率扩展超过1-2kW。 架构和软件 下一代计算架构必须推动系统性能指标(如每瓦性能)的指数级改进,同时解决热和电源完整性挑战。创新应通过先进的封装和硅工艺堆叠和互连晶圆和小芯片,实现有凝聚力的系统。此外,它们必须支持各种工作负载的自定义加速器的无缝集成。 软件是创新矩阵的重要组成部分,必须通过开源生态系统中的协作、标准化和互操作性来推进。自动化应增强安全性并简化流程,而高度优化的软件对于高效利用硅资源至关重要。在数千个GPU上分发软件会带来巨大的带宽和延迟挑战,比如高性能计算。人工智能软件将是微调系统元素、确保无缝集成和实现显著进步的关键。 超越传统计算 神经形态和量子计算等技术对于扩大人工智能所需的效率和速度的突破至关重要。自2018年以来,全球250多个实验室使用的英特尔Loihi研究芯片表明,采用CMOS工艺技术制造的神经形态芯片可以为广泛的示例算法和应用带来数量级的收益。虽然其中许多例子涉及目前与当今软件和人工智能方法不兼容的新型大脑启发算法,但一类新兴技术表明,在不久的将来,目前广泛使用的深度学习和变换器方法将实现1000倍的增益。这些神经形态创新对于将先进的人工智能功能扩展到实时环境中运行的功率、延迟和数据受限的智能设备至关重要。 量子计算代表了一种新的范式,它利用量子物理学的力量以比传统计算快得多的速度解决复杂问题。它有望彻底改变行业,解决包括气候变化在内的关键问题;化学工程;药物设计和发现;金融;以及航空航天设计。在将这项变革性技术从实验室过渡到工程领域方面取得稳步进展,为有用的、短期的应用提供客户解决方案,这一点至关重要。英特尔独特的量子研究方法涵盖了整个计算栈,包括量子比特制造、用于量子比特控制的低温CMOS技术、软件、编译器、算法和应用程序。凭借50多年的大规模晶体管制造经验,英特尔正在利用其成熟的技术开发硅自旋量子比特,作为量子计算可扩展性的最佳途径。英特尔还投资于定制设计的低温探测器等功能,这些功能大大加快了英特尔的量子测试和验证工作流程。 量子计算硬件的当前状态还不具备对当今人工智能产生直接影响的鲁棒性和规模。人工智能与量子计算机的另一个挑战是如何将大量数据输入这些复杂的机器。然而,一旦我们有了可扩展的容错量子计算机,就会有明显的好处。量子计算机可以比经典计算机更快地执行复杂的计算,这可以更快地训练和分析人工智能模型。量子计算的两个关键原理是叠加和纠缠,这使得可以同时探索多个解决方案,这可以直接有利于人工智能模型的训练和优化。并行分析大量数据的可能性也可以提高人工智能识别模式的能力,例如在图像或语音中。可以开发直接优化以利用量子特性的新AI算法,而不是使用经典的AI算法。最后,量子计算机不应被视为经典计算机的替代品,而应被视作为特殊应用的计算加速器。因此,未来人工智能的系统解决方案可能会利用经典计算和量子计算的混合实现。 生态系统协作 快速开发下一代高级计算系统将需要整个行业生态系统在这一创新矩阵上进行协作。从制造到设计工具,从知识产权到系统设计再到软件,与整个技术栈的最终用户和合作伙伴互动,确保开发过程符合市场需求和时间表,环境可持续,并利用整个生态系统的关键学习和发展。系统级协同优化需要密切协作才能实现快速进展。跨学科的专业知识和跨战略伙伴关系的知识共享对于有效解决问题和加快发展周期至关重要。利用跨行业优势并避免重复工作将使团队能够更有效地工作。 行业挑战与机遇 近二十年前,CPU时钟频率缩放面临着一个困境——对指数级性能改进的持续追求在功率密度方面遇到了障碍。其结果是一套新的并行处理器架构,以及一系列支持硅、封装和散热、互连、电源传输和核心架构的技术。今天,我们处于类似的情况,指数级性能扩展(这次是为了支持人工智能)在功率、连接性和成本方面遇到了根本性的挑战。再一次,我们系统的增量扩展是不够的,我们将需要新的方法来解决这个问题——人工智能创新矩阵。从工艺技术扩展到3DIC系统设计,再到电源传输、互连和核心架构,都不乏工程挑战。我们需要这些领域创新的综合效益,以可制造、可持续和经济高效的方式满足行业对计算能力的需求。
  • 《全球科技巨头的数字化农业AI布局》

    • 来源专题:农机装备
    • 编译者:袁雪
    • 发布时间:2025-04-14
    • 点击上方蓝字 轻松关注我们 农业的数字化转型正在加速推进,科技巨头与传统农业的融合成为关键动力。微软、IBM、谷歌、华为和亚马逊等公司,正凭借其技术专长推动农业创新,重塑这一古老行业。英特尔的芯片、华为的5G网络、NVIDIA的GPU虽未直接应用于农田,却成为农业AI模型和作物管理系统的核心。与此同时,OpenAI 和 Anthropic 等开发大型语言模型(LLM)的企业,也通过深度学习和神经网络间接赋能农业,帮助打造更强大的行业专用工具。 NVIDIA数据中心 AI 在农业中的应用正不断拓展:卫星图像结合机器学习可预测作物产量,数字孪生技术精确模拟生长环境,自然语言处理提炼多语种农业智慧,基因组学模型更是深入植物分子结构,革新遗传研究。 在应对人口增长与气候变化的关键时刻,这些科技力量是否能解决农业的长期挑战?本文将聚焦 亚马逊、微软、谷歌、IBM、英特尔、华为等公司在农业AI上的布局,并探讨 OpenAI、Anthropic 和 NVIDIA 的间接作用,揭示一个由代码驱动、深刻影响土地与人类关系的全新农业生态系统。 农业AI解决方案的主要直接参与者 AWS:为农业提供自动化数据洞察的核心平台 亚马逊云服务(AWS)正以超过240种云服务构建起现代农业的数字支柱,助力农民将数据转化为高价值作物。AWS 全球农业主管 Elizabeth Fastiggi 指出:“农业是一个数据丰富的行业”,强调了数据作为资产的战略意义。AWS 提供从精准农业到供应链管理、可持续发展等多领域工具,广泛应用物联网、机器学习和人工智能技术。 以色列农艺农场管理平台(“CropX 平台”)和应用程序使用 AWS 解决方案来推动更高效、更经济的农业生产 AWS 致力于技术的“民主化”,即为各类农业用户提供公平获取一流技术的机会。在高度安全的环境下,农企得以大胆试验、验证和扩展新技术。这一策略不仅赋能单个农场,更通过支持第三方开发者生态系统,推动农业AI解决方案的大规模部署,形成不断壮大的数据与智能资源库。 微软:打造面向未来的AI农业平台 微软通过 Azure 农业数据管理器和 Project FarmVibes.AI 两大核心项目,推动农业AI发展。2023年9月推出的 Azure 数据管理器整合了来自传感器、无人机、卫星等多源数据,实现实时分析与可视化。农业食品首席技术官 Ranveer Chandra 表示,这种数字生态系统将数据转化为农民可执行的决策信息。 Azure 农业数据管理器功能 Project FarmVibes.AI 则是技术的“大脑”,面向研究人员和从业者提供易用且经济的数字农业工具。这些工具支持在网络覆盖不全的地区运行,有效缩小农村数字鸿沟。Chandra 也展望未来生成式AI的集成,如 AI 副驾驶、聊天机器人等,能够提供本地语言、个性化的实时建议,为农业带来深层次变革。 微软的 Farm Vibes 项目在浦那巴拉马蒂试验田的卫星图像 谷歌:借助卫星图像与AI推动农业可持续性 谷歌利用其在数据分析和机器学习方面的优势,将农业与遥感技术深度结合。Google Climate Engine 平台整合了 Earth Engine 和 Google Cloud,通过分析长达50年的地球观测数据,为农业气候适应和可持续发展提供支持。 谷歌不仅服务于跨国企业(如 Regrow 和联合利华),还助力初创公司如 ListenField,为超3万名东南亚农民提供生产优化建议。谷歌持续开发作物识别与产量预测模型,推动卫星图像在农业中的深度应用,从而同时提升产量与环境友好型农业实践。 IBM:用AI和环境数据守护粮食安全 面对气候变化等环境挑战,IBM 利用其 Environmental Intelligence Suite 提取关键气候数据,解决粮食安全问题。在与 dsm-firmenich 的合作中,IBM 的AI系统帮助预测并预防谷物霉菌毒素污染,每年可为欧洲节省数百万欧元。IBM ESG 副总裁 Kendra DeKeyrel 指出,AI 不仅提升农业效率,也是应对干旱、洪水等风险的关键工具。 IBM 还持续优化其环境智能平台,使数据科学家与开发者能更深入地推动农业与气候数据的融合,目标是“领先天气一步,保护农产品”。 英特尔:以边缘计算和AI设备重塑农业现场 与注重云计算的其他公司不同,英特尔聚焦于农业现场的智能化转型。通过边缘计算、计算机视觉和网络技术,英特尔推动实时监控与自动化管理,涵盖从气候感知到生产物流的全链条。 在与 NatureFresh 农场的合作中,英特尔的AI平台实现了温室设施的智能升级。该农场IT负责人 Keith Bradley 表示,英特尔在多代CPU之间分配AI负载的能力,保障了农业场景的高可扩展性和灵活响应。这种软硬件协同的技术生态正在推动农业实现前所未有的精准与高效。 华为:通过5G打造全球智慧农业示范 华为在全球推动5G智慧农业,尤其在奥地利实施的5G无人机监控农场项目,已显著提高效率、减少农药使用并改善农村网络基础设施。其解决方案融合5G、物联网与云计算,全面覆盖精准农业、远程监测和数据分析。 华为海外5G智能农场 尽管面临部分市场的地缘挑战,华为依然凭借技术创新和在“一带一路”沿线国家的广泛布局,成为农业AI发展的重要推动者。其“绿色现场”项目展示了其对全球数字农业未来的持续投入与承诺。 农业科技的“隐形影响者” OpenAI 与 Anthropic:生成式AI与农业的潜在结合 尽管 OpenAI 和 Anthropic 尚未推出专为农业定制的产品,但它们在生成式 AI 和大型语言模型(LLM)方面的前沿研究,为农业应用打开了全新可能。这些公司开发的语言模型已被广泛应用于科研、教育和决策辅助等领域,其潜力同样适用于农业。 例如,LLM 可用于自动解读农业研究论文、生成作物管理建议,或辅助农民进行技术学习。OpenAI 在强化学习方面的突破性成果,也可能用于优化农业机器人路径规划或精准作业流程。虽然目前的影响是间接的,但随着 AI 技术的快速演进,这些模型将可能在农业知识提取、农业教育、农艺模拟等方面发挥更直接作用。 NVIDIA:支撑农业AI背后的计算引擎 NVIDIA 虽不直接开发农业产品,但作为全球领先的 AI 芯片提供商,其GPU技术正是大多数农业人工智能模型运行的基石。从卫星图像分析到基因组研究,NVIDIA 提供了处理海量数据与复杂算法所需的高性能计算能力,推动了精准农业、作物预测、环境监测等核心场景的智能化发展。 NVIDIA 首席执行官黄仁勋也高度重视农业的AI潜力。公司已与多家农业科技企业展开合作,应用 GPU 加速的模型实现精准灌溉、病虫害监测、土壤健康评估等功能。这些合作不仅提升了产量,也大幅降低了资源消耗,展现出技术驱动的可持续农业未来。 黄仁勋提出,将 AI 应用于农业不仅是提升效率,更是应对全球粮食安全与气候挑战的重要手段。NVIDIA 的角色正体现了跨行业科技融合的趋势:即便不直接面向农业,其核心技术也能在背后推动农业变革。这种“隐形”的技术支持,正在重塑我们对农业创新生态的理解。 比较分析 在深入探索科技巨头推动农业人工智能的路径时,可以清晰地看到几大关键趋势与差异。 首先,在基础设施与解决方案方面,AWS、Google Cloud 和 Microsoft 凭借强大的云服务平台,为农业AI提供了广泛支持,成为众多第三方农业科技解决方案的基石。而IBM则更侧重于开发垂直整合的端到端方案,专门应对农业中的特定挑战,如气候风险与粮食安全。 在硬件与软件的技术重心上,英特尔与NVIDIA聚焦于算力基础,为高性能农业AI模型提供GPU和边缘计算芯片支持,尤其适用于需要实时处理的田间作业。而微软和AWS则发挥其在AI算法和机器学习方面的优势,打造用于作物产量预测、病虫害识别等复杂任务的软件解决方案。 核心技术与市场集中度方面,目前主导AI应用的Transformer架构和大型语言模型(LLM)需要庞大的算力与数据支撑,仅少数科技公司具备独立开发这些模型的能力。这种能力的集中,也导致了农业AI生态中的技术壁垒:部分公司可自主构建模型,而更多企业则依赖外部合作或开放平台。 在数据源的整合与利用方式上,各家公司展现出不同的技术路线。微软的 FarmVibes 强调多源数据融合,包括IoT设备、卫星图像与气象数据,实现对农场运行状态的全局掌控;谷歌则发挥其在地理空间分析上的优势,通过遥感影像实现大范围作物监测;IBM聚焦于环境与气候数据的深度融合,用于精准预报与风险管理;AWS构建的云平台能够整合传感器数据与历史记录,为农场运营提供数据驱动支持;英特尔则主打边缘计算,在田间现场实现实时感知与响应;华为通过将5G、物联网和云计算相结合,打造包括无人机监测、智能分析在内的全面智慧农业系统。 尽管路径不同,这些企业面对的共同挑战是:如何将庞杂的数据转化为对农民真正有价值的洞察和工具。每家公司在数据整合方式上的选择,不仅体现了其技术优势,也反映了其在农业AI领域的战略定位。 正如国际园艺学会(ISHS)人工智能参考小组主席 Graeme Smith 所言:“人工智能正在开启农业的新时代,彻底改变从作物规划到消费的各个方面。”科技巨头的行动,不只是技术部署,更是在塑造全球农业的未来格局。 人工智能的核心在于通过对数据的学习实现预测与决策。在农业领域,这意味着算法可以分析来自卫星图像、传感器、气象站和摄像头等多源数据,实现对农作物的实时感知与成像,为农民提供切实可行的指导意见。 面对气候变化、害虫抗药性增强、市场波动、劳动力短缺与可持续发展的压力,农业正以前所未有的速度向科技化、智能化转型。受控环境农业(CEA)的兴起正是这一变革的缩影:大型温室群在全球范围迅速扩张,生成了极为复杂的数据系统,推动了人工智能的深度嵌入。从精准灌溉、作物预测到资源配置,AI 正在重新定义农业的运作逻辑,并开始对全球经济、贸易结构、劳动力市场乃至国家间关系产生影响。 国际园艺学会人工智能参考小组主席 Graeme Smith 认为,AI 将农业从基于经验的传统工艺转变为高度数据驱动的科学。通过整合环境、表型与基因组等多维数据,人工智能可大幅提升农业的可持续性、生产效率与资源利用水平。从农田实时监控平台到基于卫星图像的产量预测系统,这些技术不仅提升了农民的决策能力,也预示着新农业范式的到来。 AI 的价值不止于优化当下,更在于构建面向未来的气候适应型农业模式。以AI驱动的CEA系统为例,不仅节水高达95%,节地显著,单位产量远超传统农业,还能显著减少运输、施肥和能源环节的碳排放,推动农业向高效、低碳、智能的方向发展。同时,AI在户外农业中的应用亦日益广泛,预测性模型帮助农民规避气候异常,减少产量损失与资源浪费。 知名经济学家 Steve Keen 指出,主流经济模型常忽视气温升高对降水和农业系统的连锁反应。他强调,AI 可以为农民提供传统思维难以实现的应对策略,弥补气候建模与农业决策之间的落差。正如 IBM 环境智能套件的实践所示,AI 正成为农民在不确定气候中稳产保收的重要工具。近期 NASA 的研究更警告,即使没有最极端的气候剧变,仅在高排放情境下,2030年前全球玉米产量可能下降四分之一,凸显应对挑战的紧迫性。 与此同时,人工智能的崛起也正催生“自主农业”新格局。英特尔的边缘计算与 NVIDIA 的GPU正在为农业设备提供实时决策能力,自主作业成为可能,农业生产正迈向前所未有的精确化和自动化。然而,技术革新也伴随着伦理与社会结构的挑战,包括数据隐私、技术垄断、以及中小农户在数字转型中面临的边缘化风险。 农业AI的未来不仅关乎技术突破,更取决于科技公司、政策制定者与农业从业者之间的协作治理。我们正站在农业新时代的门槛,人工智能所带来的不仅是产量的提升,更是对全球粮食安全、环境适应能力以及公平可持续发展的深刻回应。 农业科技侠交流群 入群可添加小编微信(扫描下方二维码,备注:来意-姓名-单位,若二维码添加失败,请公众号后台私信留言“入群”) 投稿、宣传推广、开白等请在本公众号后台回复“1” 转载请注明来源:本文转自农业科技侠数字与智慧农业微信公众号 编辑:傅莹 声明:本文旨在前沿分享,若有编辑等问题,敬请后台留言