《油菜素甾醇固醇通过细胞壁和组织力学协调植物细胞层相互作用》

  • 来源专题:战略生物资源
  • 编译者: 郭文姣
  • 发布时间:2023-07-12
  •     2023年6月22日, 约翰英纳斯中心的研究团队在Science上发表以”Brassinosteroid coordinates cell layer interactions in plants via cell wall and tissue mechanics“为题的研究论文。

        细胞层间的生长协调是大部分多细胞生物发育的关键。该研究表明驱动油菜素甾醇合成的基因通过减少机械表皮机械约束,至少部分促进内部组织生长。研究人员在水生植物丝叶狸藻内部识别出一个缺乏油菜素甾醇的矮小突变。通过重新构建细胞壁,表明基因调控细胞层间生长协调的机制。

  • 原文来源:https://www.science.org/doi/10.1126/science.adf0752
相关报告
  • 《Science | 蛋白-肽-多糖相互作用介导植物细胞壁的形成与扩增》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-11-12
    • 本文内容转载自“ BioArt植物”微信公众号。原文链接: https://mp.weixin.qq.com/s/9gezzTNEEjLk8Xpfc3DSTA 2023年11月9日,瑞士洛桑大学与法国巴黎萨克雷大学的研究人员在Science发表题为Plant cell wall patterning and expansion mediated by protein-peptide-polysaccharide interaction的研究论文。该研究使用拟南芥花粉管为模型系统,证明了RAPID ALKALINIZATION FACTOR 4 (RALF4)与LEUCINE-RICH REPEAT EXTENSIN8(LRX8)形成异四聚体,通过RALF4的多阳离子表面以电荷依赖的方式特异性地与去甲基化果胶相互作用,该过程是形成细胞壁的关键。 植物细胞壁由纤维素微纤维和果胶等基质聚合物组成,细胞壁多糖组装成特定的模式是植物生长发育所必需的。一直以来,植物细胞壁单体如何形成一个可生长发育的细胞壁的模式是植物生物学的核心问题。细胞扩增需要快速的反馈信号严格控制,这些信号相互协作调控细胞壁形成,避免细胞壁完整性的丧失,而该过程中通过去甲基化调节多聚半乳糖醛酸电荷发挥关键作用,但具体的分子机制尚未明晰。 该研究证明了RALF4在细胞壁形成过程中的信号及结构的双重作用。LRX8-RALF4复合物不仅作为信号分子,还作为细胞壁的组成成分,结合并凝聚果胶等细胞壁多糖形成网状结构,并在花粉管生长过程中保持细胞壁的完整和可扩展性。该研究可能为揭示蛋白-多糖相互作用在细胞壁结构和功能中的其他作用提供灵感。
  • 《Nature | 胞质钙稳态协调植物生长和免疫平衡》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-02-29
    • 2024年2月28日,加州大学伯克利分校栾升教授课题组在Nature期刊在线发表题为 Mechanisms of calcium homeostasis orchestrate plant growth and immunity 的研究论文。 近年来,研究人员已经深入研究了植物免疫过程中的Ca2+ 流入细胞质(即钙信号起始)的钙通道蛋白及其激活机制。然而,人们对于Ca2+流出机制以及Ca2+ 稳态调节(即钙信号消退)的了解依然非常有限,并且对这些机制如何影响植物的生长和免疫尚不清楚。 该研究首次报道了拟南芥中两条完整的信号传导途径,它们都汇聚于激活液泡膜上的钙氢逆向转运体(CAXs,Ca2+/H+ antiporter),在不同的生理条件下清除植物细胞质内过量的Ca2+。第一条途径发生在植物正常生长于土壤过程中,是在响应外部Ca2+水平时激活的,由定位于液泡膜的钙感受器蛋白CBL2/3以及相互作用的蛋白激酶CIPK3/9/26形成的复合体介导,它们通过磷酸化CAX1/3自抑制结构域中的一组丝氨酸簇(S-cluster)来激活CAX1/3,从而降低周围环境中的钙对植物潜在的毒害。第二条途径是发生在植物遭遇微生物入侵时,由PTI相关的免疫信号激活,涉及免疫受体复合物FLS2–BAK1以及相关的细胞质激酶BIK1和PBL1,它们通过磷酸化CAX1/3中相同的S-cluster来促进细胞质Ca2+ 的清除并调节免疫中的钙信号。这两条信号转导途径前者是Ca2+ 依赖性的(CBL–CIPK-CAX/3)而后者是钙非依赖性(FLS2–BAK1–BIK1/PBL1-CAX/3),它们通过在不同的生理条件下调节细胞质Ca2+ 稳态,通过激活水杨酸合成和信号途径,来实现植物生长和免疫的平衡。 无论生长还是防御都是植物在其生命周期中需要做出的最常见抉择。该研究揭示了Ca2+稳态的调节可以作为植物能在生长和防御之间进行转换的分子开关机制之一。在正常土壤生长条件下,植物通过Ca2+–CBL–CIPK–CAX1/3通路将Ca2+区域化到液泡内,以维持 [Ca2+]cyt 的静息态水平。这条途径代表了一种依赖Ca2+反馈循环的自主调控机制以适应自然环境中的钙水平。此外,在PTI的免疫反应中,FLS2—BAK1—BIK1/PBL1通路同样激活了CAX1/3,从而塑造了免疫中的钙信号。这其中,BIK1/PBL1对钙信号具有双重功能:一方面磷酸化激活CNGC2/4通道起始钙信号;另一方面,磷酸化激活CAX1/3转运蛋白解除钙信号。CAX1/3的破坏会导致持续的[Ca2+]cyt升高,从而触发水杨酸依赖的免疫并导致生长抑制。该研究不仅在植物钙信号转导的领域具有重要的理论价值,而且对培育新型高产抗病农作物也具有潜在的指导意义。