《中国科学家刷新锂二次电池能量密度最高值,达 711Wh/kg》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2023-05-19
  • 二次电池是可以反复充放电的电池,其中锂离子电池是性能最优的一种。提高锂电池的能量密度,即每单位质量或体积所储存的能量,是电池研发的重要目标。

    目前商用的锂离子电池的能量密度为200 至300Wh/kg,在实验室中,世界各国都在努力开发能量密度达到 400 至 600 Wh/kg的锂电池,然而,中国的科学家却将这数字直接提升到了711 Wh/kg。

    来自中国科学院物理研究所/北京凝聚态物理国家研究中心HE01组李泉博士、博士研究生杨旸在李泓研究员和禹习谦研究员的指导下,研制了一种基于高容量富锂锰基氧化物正极和超薄金属锂负极的具有超高质量比能量密度和体积比能量密度的10Ah级软包锂二次电池,经中国北方车辆研究所北方汽车质量监督检验鉴定试验所的第三方测试, 首次放电质量能量密度达到711.30 Wh/kg 、体积能量密度达到1653.65 Wh/L!

    研究人员通过拓宽富锂锰基氧化物的充放电电位获得更高材料储锂容量、采用隔膜涂层技术解决超薄锂大面容量沉积可逆性、并探索厚电极、贫电解液、超薄集流体的匹配性应用等综合策略,最终实现了超高能量密度电池的可逆充放电。该数据为目前已公开报道的锂二次电池的能量密度最高值

    相关成果以“A 700Wh kg -1 rechargeable pouch-type lithium battery”为题发表在Chinese Physics Letters上

相关报告
  • 《我国科学家发现宇宙中锂丰度最高恒星》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-10-15
    •         8月7日,国际期刊《自然-天文》(Nature Astronomy)在线发表我国天文学家的一项重大发现,以中国科学院国家天文台科研人员为首的团队依托大科学装置郭守敬望远镜(LAMOST)发现一颗奇特天体,它的锂元素含量约是同类天体的3000倍,这是目前人类已知锂元素丰度最高的恒星。   锂元素是连接宇宙大爆炸、星际物质和恒星的关键元素,一直以来它在宇宙和恒星中的演化都是天文领域的重要课题,然而当代天文学对锂元素的理解还具有很大局限性。富含锂元素的巨星十分稀有,但在揭示锂元素起源和演化上却具有重要意义。遗憾的是,过去30余年天文学家只发现极少量此类天体。   随着LAMOST落成和巡天计划的开展,其海量恒星光谱观测能力在天文基础研究中逐渐发力,在此次科学发现中发挥了至关重要的作用。这颗新发现的富锂恒星来自于银河系中心附近的蛇夫座方向,位于银河系盘面以北,距离地球约4500光年。国家天文台博士闫宏亮、研究员赵刚、研究员施建荣等人在取得这一重要发现的同时,与来自中国原子能科学研究院、北京师范大学等院所高校的科学家合作,对这颗奇特恒星开展了深入研究。他们发现,这颗恒星的锂元素很可能来自恒星内部的一种特殊的物质交换过程,并结合美国自动行星搜寻者望远镜(APF)的高分辨率光谱和中国原子能科学研究院最新的原子数据,通过模拟再现其内部经历的变化,从而对这颗恒星的锂元素丰度给出合理的解释。   这一发现改变了人类对天体中锂元素的认知,将国际上锂含量观测极限提高了一倍。同时,这项研究在理论上对锂元素合成和现有恒星演化理论提出了独树一帜的新观点。   这一成果是我国大型科学装置在前沿基础学科取得突破性进展的又一实例,也是基础研究领域跨学科深入推进合作研究的一次成功尝试。
  • 《创新的电池设计提供高能量密度和可持续性》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2023-11-16
    • 由香港大学机械工程系梁耀忠教授领导的研究团队开发出高性能准固态镁离子(Mg-ion)电池,实现了电池技术的重大突破。这种创新设计为传统锂离子电池提供了一种可持续、安全和高能量密度的替代品,解决了材料稀缺和安全问题的限制。 最近,该论文以 "下一代镁离子电池 "为题发表在《科学进展》(Science Advances)上: 这种新型镁离子电池有可能彻底改变整个行业。"梁教授说:"这是一个改变游戏规则的发展。 近年来,鉴于锂离子电池的局限性,镁离子电池已成为一种潜在的解决方案。然而,开发高效镁离子电池的道路充满挑战,包括需要克服水性或水基体系中狭窄的电化学窗口,以及非水性体系中离子传导性差的问题。 为了克服这些障碍,梁教授的团队开发出了盐中水镁离子电池,其工作电压超过 2 V。然而,由于阴极中的质子存储比镁离子存储占主导地位,这种电池仍然落后于非水基电池。 "与金属离子相比,氢离子或质子更小、更轻。由于体积小,质子很容易进入电池的阴极结构。梁教授团队的博士生、该研究的第一作者 Sarah Leong 说:"然而,这就产生了一个问题,因为质子和镁离子会争夺空间,这就严重限制了电池所能存储的能量以及电池的使用寿命。 (A-B)电池在室温和零下温度下的显著循环性能。(C) 电池耐压高达 40 个大气压。(D)与易燃的商用锂离子电解液相比,水性电解液不易燃。来源:《科学进展》(2023 年)。DOI: 10.1126/sciadv.adh1181 然而,团队的不懈努力终于结出了硕果,推出了准固态镁离子电池(QSMB),这是一种创新的电池设计,使用聚合物增强电解质来控制质子和金属离子之间的竞争。 QSMB 在 2.4 V 时具有令人印象深刻的高电压,能量密度达到 264 W-h kg-1,超过了目前镁离子电池的性能,几乎与锂离子电池的性能相当。 梁教授说:"我们的准固态镁离子电池结合了两方面的优点,既有非水系统的高电压,又有水系统的安全性和成本效益。它标志着高性能镁离子电池的开发向前迈出了一大步。 为了对 QSMB 进行终极测试,研究团队进行了广泛的循环测试,结果令人吃惊。即使在零下温度(-22°C)的极端条件下,QSMB 经过 900 次循环后仍能保持 90% 的容量,令人印象深刻。此外,这种电池还具有不可燃性,可承受超过 40 个大气压的压力。这种耐用性和性能使 QSMB 成为消费类电子产品的理想选择,即使在寒冷的气候条件下也是如此。 梁教授团队的研究助理教授潘文定博士认为,QSMB 技术有可能重塑能源存储的格局,为我们的世界提供可持续的动力。 他说:"我们研究中提出的先进电解质开发战略不仅具有镁离子电池的潜力,还能扩展到锌离子和铝离子电池等其他多价金属离子电池。我们相信,这项研究将为下一代不仅高效而且环保的储能解决方案铺平道路。 参考文献:Kee Wah Leong et al, Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage, Science Advances (2023). DOI: 10.1126/sciadv.adh1181