Real-time detection of COVID-19 epicenters within the United States using a network of smart thermometers
Samuel D Chamberlain, Inder Singh, Carlos A Ariza, Amy L Daitch, Patrick B Philips, Benjamin D Dalziel
doi: https://doi.org/10.1101/2020.04.06.20039909
Abstract
Containing outbreaks of infectious disease requires rapid identification of transmission hotspots, as the COVID-19 pandemic demonstrates. Focusing limited public health resources on transmission hotspots can contain spread, thus reducing morbidity and mortality, but rapid data on community-level disease dynamics is often unavailable. Here, we demonstrate an approach to identify anomalously elevated levels of influenza-like illness (ILI) in real-time, at the scale of US counties. Leveraging data from a geospatial network of thermometers encompassing more than one million users across the US, we identify anomalies by generating accurate, county-specific forecasts of seasonal ILI from a point prior to a potential outbreak and comparing real-time data to these expectations. Anomalies are strongly correlated with COVID-19 case counts and may provide an early-warning system to locate outbreak epicenters.
*注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.