《重磅 | 我国首款!华中科技大学团队成功研发计算光刻EDA软件》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-11-30
  • 近日,华中科技大学机械学院刘世元教授团队成功研发出我国首款完全自主可控的OPC软件,并已在相关企业实现成果转化和产业化,填补了国内空白。

    “OPC是芯片设计工具EDA工业软件的一种,没有这种软件,即使有光刻机,也造不出芯片。从基础研究到产业化应用,我们团队整整走了十年。十年磨一剑,就是要解决芯片从设计到制造的卡脖子问题。”

    据刘世元介绍,光刻是芯片制造中最为关键的一种工艺,就是通过光刻成像系统,将设计好的图形转移到硅片上。随着芯片尺寸不断缩小,硅片上的曝光图形会产生畸变。在90nm甚至180nm以下芯片的光刻制造前,都必须采用一类名为OPC(光学临近校正)的算法软件进行优化。没有OPC,所有IC制造厂商将失去将芯片设计转化为芯片产品的能力。

    计算光刻OPC原理图

    目前,全球OPC工具软件市场完全由Synopsys、Mentor、ASML-Brion等三家美国公司占领。

    刘世元是华中科技大学集成电路测量装备研究中心、光谷实验室集成电路测量检测技术创新中心主任。他早年师从原华中理工大学校长、著名机械学家杨叔子院士,于1998年获工学博士学位。

    2002年,刘世元在学院派遣下,作为最早的几个技术骨干之一,加盟上海微电子装备有限公司(SMEE),承担国家863重大专项——“100nm光刻机”研制任务,为总体组成员、控制学科负责人。通过3年多的奋斗,他组建了SMEE第一个控制工程实验室,解决了扫描投影光刻机中掩模台、工件台、曝光剂量等同步控制的技术难题。

    “20年前我参与国家重大专项100nm光刻机的研制,回到学校后,我就一直在从事计算光刻方面的研究工作,坚持做基础的研究,做关键技术的攻关。”2005年,从上海回到学校之后,刘世元在摸索中逐渐找准了自己的学术定位:面向IC制造需求,立足先进光刻与纳米测量基础理论及学术前沿开展研究。2010年初,他明确选定了两个主攻研究方向:面向IC纳米制造的计算光刻与计算测量。十多年来,他和团队在该领域的基础理论与技术创新上做了许多工作,相继获得国内外学术界和产业界同行的重视和认可。

    “2013年,我第一次赴日本京都参加第6届国际光谱椭偏学大会,当时还只能当听众。到了2016年,在德国柏林召开的第7届国际光谱椭偏学大会上,我应邀做了大会主题报告,成为该学术会议创办23年来第一位做大会主题报告的华人学者。”刘世元回忆道。如今,刘世元专注集成电路计算光刻的基础研究已有20余年。刘世元团队坚持最底层的代码一行行敲、最基础的公式一个个算,终于打造出自主可控的OPC软件算法。

    刘世元表示,希望自己的研究成果能够最终转化成产品,为国家和社会发展作贡献。今后,他将带领团队和他所创立的宇微光学软件有限公司加快产品推广步伐,加快进入国内外芯片制造厂商市场,力争成为全球芯片产业链中重要的一环。

相关报告
  • 《华中科技大学实现半导体专用光刻胶重大突破》

    • 来源专题:光电信息技术
    • 编译者:王靖娴
    • 发布时间:2024-10-21
    • 【内容概述】据光行天下10月21日报道,华中科技大学武汉光电国家研究中心团队在半导体专用光刻胶领域实现重大突破。团队研发的T150A光刻胶系列产品,已通过半导体工艺量产验证,实现原材料全部国产化,配方全自主设计,有望开创国内半导体光刻制造新局面。     武汉光电国家研究中心团队研发的这款半导体专用光刻胶对标国际头部企业主流KrF光刻胶系列。相较于被业内称之为“妖胶”的国外同系列某产品,T150A在光刻工艺中表现出的极限分辨率达到120nm,且工艺宽容度更大,稳定性更高,留膜率更优,其对刻蚀工艺表现更好,通过验证发现T150A中密集图形经过刻蚀,下层介质的侧壁垂直度表现优异。     团队在电子化学品领域深耕二十余载,立足于关键光刻胶底层技术研究,致力于半导体专用高端电子化学品原材料和光刻胶的开发,并以新技术路线为半导体制造开辟新型先进光刻制造技术,同时为材料的分析与验证提供最全面的手段。该团队负责人表示:“以光刻技术的分子基础研究和原材料的开发为起点,最终获得具有自主知识产权的配方技术。这只是个开始,我们团队还会发展一系列应用于不同场景下的KrF与ArF光刻胶,致力于突破国外卡脖子关键技术,为国内相关产业带来更多惊喜。”
  • 《华中科技大学朱锦涛团队在室温长余辉发光材料及指纹成像方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-01
    • 有机长余辉材料是近几年发展的一类发光材料。然而,绝大多数有机分子仅仅在聚集态(如晶体)或者需要掺杂在特殊的主体中才能发挥出室温长余辉发光,主要原因是分子在聚集态中可以实现分子间的电子耦合,进而通过系间穿越(ISC)敏化三重激发态。 为了实现有机分子在无定型状态下的长余辉发光,华中科技大学化学与化工学院朱锦涛教授团队与武汉国家光电研究中心朱泽策博士合作构建了一种存在分子内电子耦合作用的有机小分子(CzDPS)(见图1)。分子中的咔唑(给体)和二苯砜(受体)单元在空间上靠近,这种给受体在空间上的近距离作用可有效地介导系间穿越,并实现非聚集态的长余辉发光。研究结果表明,CzDPS不仅在晶态中具有室温磷光现象,而且在掺杂浓度仅为1wt %的光固化胶中仍然具有长余辉发光,表明该类材料在塑料和光固化3D打印等领域中有很好的潜在应用。 图1、CzDPS在晶体中的构象及室温发光现象 在此基础上,该团队还探讨了该有机长余辉材料在时间分辨成像中的应用。传统有机材料的发光寿命一般在纳秒到毫秒量级,往往需要复杂而精密的成像设备才能将材料的发光与背景散射光区分开来。而长余辉材料的发光寿命可达秒级,通过一般的CMOS相机即可检测到毫秒延迟的长寿命发光。利用CzDPS的长余辉发光性质,该团队仅通过在紫外LED灯下照射附着在指纹上的样品,关掉紫外LED灯后使用手机拍照,即可实现指纹的时间分辨发光成像,有效消除了散射光和基底的自荧光对指纹识别的干扰(见图2),为指纹识别鉴定提供了一种新的、简便方法。 研究结果发表于《Materials Horizons》杂志上,田迪博士为文章第一作者。