《锑污染土壤中添加蚯蚓对油菜生长及土壤特性的影响》

  • 来源专题:农业立体污染防治
  • 编译者: 季雪婧
  • 发布时间:2023-03-01
  • 为探究蚯蚓对锑污染土壤中油菜的生长及根际土壤特性的影响,通过盆栽培养试验,研究了赤子爱胜蚓添加后锑污染下油菜幼苗生物量、富集系数的变化,并从根际土壤养分、酶活性和细菌群落结构三个方面初探了锑污染状况下蚯蚓对油菜富集锑的影响机制。结果表明,1)锑污染土壤中,赤子爱胜蚓可以提高油菜的生物量以及锑的富集,南油杂1号锑的富集含量达到358.3 mg/kg;2)锑显著抑制了过氧化氢酶、蔗糖酶和脲酶活性(P<0.05),蚯蚓显著提高了锑胁迫下两个油菜品种根际土壤的过氧化氢酶、蔗糖酶和脲酶活性(P<0.05),最大激活率分别为13%-31%,15%-48%和24%-44%,冗余分析表明全磷、全氮、碱解氮是影响土壤酶活性变化的重要因子;3)添加蚯蚓未改变油菜根际土壤中优势菌门的组成,主要增加了Bacteroidetes、Cyanobacteria和Chloroflexi的丰富度,其中Bacteroidetes与过氧化氢酶、脲酶活性呈极显著相关(P<0.01)。本研究可为植物-动物联合生态修复技术在锑污染农田生态修复中的应用提供科学依据。

相关报告
  • 《生物修复技术在重金属污染土壤中的应用及发展》

    • 来源专题:农业立体污染防治
    • 编译者:季雪婧
    • 发布时间:2019-11-20
    • 摘要:近些年,因为各方面原因导致我国很多地区的土地重金属含量严重超标,其不仅给人民群众的生命安全造成了严重的影响,还会干扰到农村发展的进程,这些情况都在说明解决重金属污染问题已经迫在眉睫。据此,本文将从生物修复技术在重金属污染土壤治理的实际应用入手研究,并对其未来的发展方向进行展望,以期能够为如今的相关研究部门的生物修复技术的开发和研究提供一些理论基础,进而促进我国重金属污染土壤的治理工作。 关键词:生物修复技术;重金属污染;应用;发展 前言:随着社会经济的不断发展,如今的社会对于各方面地需求也在日趋上升,但同人们地需求一同上升的却是如今的环境污染问题也在日趋严重,大量的工业“三废”的排放、农药化肥的不合理使用等等问题,都导致了如今土地环境中各方面重金属的含量严重超标。其不仅会对人们的身体健康造成严重的影响,还会导致可耕种的土地范围也在日渐缩小,所以对土地重金属含量超标这一问题进行治理已经是如今迫在眉睫的一个严峻问题。 一、重金属污染土壤的现状: 现如今,很多地区土壤的重金属污染都是由于人类的日常生产活动做造成的。过去人类所造成的重金属污染没有超过自然界的自我净化能力,所以没有显现出太多的问题,但随着社会的不断发展,人们对于各方面的需求也在不断的上升,而有需求就会有生产,需求量越大,生产量也就越多,但人类的生产与生活常常都是伴随着污染产生的,随着需求量越来越多,造成的污染也就越来越多,最终超过了自然界的自我净化能力,致使出现土壤污染问题,最终对人们的生命健康和农业生产造成了极大的负面影响。而且相对于其他污染来说,重金属污染更加普遍和隐蔽,其在污染初期并不容易被人们所发现,只有在污染问题积累到一定程度以后,才能够被人们所发现,但这个时候已经有些为时已晚,自然界已经无法对其进行自我净化作用,只能通过人类自身的各种方法来对其进行治理工作。据有关部门研究发现,当前我国被污染的土壤面积已经超过了5000万亩,这些被污染的土壤中超标的重金属元素主要有汞、镉、铅、铬、锌、铜等,并且随着时间的推移,土壤重金属污染的情况还在不断的加剧,如不及时对这些已经被重金属污染的土壤进行治理工作,那么就会对我国的生态环境造成严重的危害,进而危害到人们的生命健康[1]。 二、生物修复技术在重金属污染土壤中的应用: 所谓的生物修复技术,就是指那些利用生物的生命代谢活动来将土壤中所蕴含的各种有毒有害物质进行消除或者是进行无害化处理的技术。而现如今,生物修复技术主要分为植物修复技术、微生物修复技术、动物修复技术三大类。相对于其他的重金属污染治理技术来说,生物修复技术有着修复时间短、对周围环境不会造成太大的干扰,修复效果比较明显等优点,所以在如今被广泛的应用于各种重金属污染污染的治理之中。 (一)植物修复技术: 所谓的植物修复技术,就是直接利用其各种绿色植物及其共生的微生物系统来对已经被重金属污染的土壤进行吸收、富集作用,进而有效改变土壤重金属污染的一种新兴环境治理技术。在实际应用过程中,用超富集作用植物修复技术主要分为植物吸收、植物挥发以及植物稳定三大类:其中植物吸收就是植物利用自身的根部来发挥出超富集作用,进而对各种重金属元素通过根部进行吸收,再从根部进行转移,转移到植物的地上部分,最终达到消除、降低土壤内部重金属元素含量的目的;而植物会发则是指植物在生长生存过程中,通过自身的转化作用,将土壤中所积累的各种重金属元素转化成为可挥发的形态,最后从植物的地上部分将其进行挥发,以此来起到降低和消除土壤中的重金属元素含量的目的;至于植物稳定则是指利用植物来降低土壤中的各种重金属元素的活性,进而实现降低重金属的危害性的目的[2]。如今植物修复技术已经被广泛的应用于如今的重金属污染土壤治理过程中,并取得了很多喜人的效果。例如水生植物凤眼莲可以对土壤中的汞、铅、镉、铜、砷都有着良好的富集效果。 在例如印度芥菜也同样可以应用于重金属污染土壤的治理当中,其对于各种重金属的富集效果也非常良好,由此可见在如今的重金属污染土壤中应用植物修复技术进行重金属治理是一种非常好的方法。 (二)微生物修复技术: 微生物修复技术,就是选择那些自然界已有的或者人工培育后的有着各方面特性的微生物,然后利用其生命代谢活动,对土壤中所蕴含的各种重金属元素进行转化、降解,进而起到降低重金属元素活性或者进行消除的作用。据科学研究发现,微生物对于重金属污染土壤治理主要是通过两种机理来进行的。其一是微生物通过生物代谢活动来对重金属元素的形态进行改变,以此来降低重金属元素的毒性的作用;其二则是微生物通过自身的生物代谢活动来对土壤中所蕴含的各种重金属元素的价态进行改变,将重金属元素转变成为一种易溶物,进而可以轻易的将其从土壤中进行滤除工作,以此来实现降低土壤中重金属元素含量,改善土壤生态环境的目的[3]。如今,世界上对于微生物修复技术的研究也同样取得了很大的成效。例如在国外,有很多学生都曾经利用微生物修复技术的第二种机理来将重金属元素从土壤中进行分离工作,由此可见微生物修复技术在却是可以在实际重金属污染土壤治理过程中进行应用。而在我国,也同样有很多专家学者在进行相关的微生物修复技术的研究工作。例如牛旭等人曾经研究过微生物能耗改变矿区的的特性,进而将矿区改变成为种植区进行过相关的研究工作。而对于矿区的土壤来说,其中蕴含着很多难以通过自然界的净化作用来进行降解的腐殖质,这些腐殖质的存在不仅会影响到土壤的整体结构,还会对土壤的疏松度造成一定的干扰,这些都矿区转化成为种植区的阻碍坐在。但通过对微生物修复技术的研究发现,微生物修复技术不仅可以对这些腐殖质进行降解作用,还能够积累土壤中所蕴含的有机质,进而起到改善土壤整体结构的同时,实现积累土壤肥力的作用。 (三)动物修复技术: 所谓的动物修复技术,就是利用土壤中本身便存在的各种动物及其肠道中现有的微生物,在自然条件下或者人工条件下、促使其这些动物及其体内的微生物的生长与繁殖,然后令其在生命代谢过程中,对土壤中所蕴含的各类重金属进行去除、分解、富集等作用。一般在使用动物修复技术的时候,通常都会选择诸如蚯蚓、蜘蛛等常见的动物,其不仅有着很强的重金属富集能力,还能够改善土壤的结构,提升土壤的肥力,所以在如今的重金属生物修复技术当中,动物修复技术应用之处也很多。 三、生物修复技术在重金属污染土壤中的发展展望: 目前,我国对于生物修复技术的研究还是处于起步阶段,所以主要研究方向还是几种与植物修复技术与微生物修复技术两类生物修复技术之上,对于动物修复技术的研究却不是很多。也正是因为我国对于生物修复技术的研究还处于起步阶段,所以还存在着诸如用于修复的生物和被修复地区的本土生物之间存在的竞争、生物修复效果容易受到外界因素影响等问题。根据这些问题,本文将对未来生物修复技术的发展方向进行展望:(1)做好用于修复的生物与被修复地区本土生物之间的竞争协同关系;(2)建立完善的生物修复体系,很多土壤中所蕴含的重金属还有着极大的回收再利用的价值,未来如果在完善生物修复技术的同时,还应该方便重金属元素在分离受的回收作用,进而缓解我矿产资源缺乏的现状。 总结:综上所述,鉴于我国如今土壤重金属污染现象越来越严重的问题,使得越来越多的人们关注起重金属污染土壤的治理问题。虽然生物修复技术有着各种各样的优点,但因为我国相关的生物修复技术起步时间比较晚,还有很多不足之处,所以在进行具体应用过程中肯定会有着很多的局限之处,但作者相信,随着生物修复技术而不断研究发展,未来肯定会全面的应用于各种污染修复之中,进而为我国人民群众创造出一个更加优美的生态环境。
  • 《纳米材料在有机污染土壤修复中的应用与展望》

    • 来源专题:农业立体污染防治
    • 编译者:季雪婧
    • 发布时间:2017-11-23
    • 伴随着工农业生产过程,农药以及多氯联苯(PCBs)、多环芳烃(PAHs)和石油烃等典型有机污染物被排入土壤环境,因其隐蔽性、滞后性和长期性等特点,人们一度忽视它们所产生的环境危害。大多数有机污染物具有水溶性差、难降解和高毒性等特点,改变正常的土壤结构和功能,弱化土壤的生产能力,并通过生物富集作用对人体产生致突变、致畸和致癌的潜在危害。 近年来,有机污染土壤修复研究引起了人们的广泛关注,传统有机污染土壤修复包括物理修复技术、化学修复技术和生物修复技术等。 物理修复技术主要包括气相抽提技术和热解吸等,气相抽提技术成本低、可操作性强,能够进行原位修复,但是对低挥发性有机物的处理效果较差且后期处理效率低;热解吸工艺简单、周期短,处理挥发性和半挥发性有机污染物效率较高,但该技术耗费能源,破坏原有土壤结构和生态系统,不适用于大范围应用。 化学修复技术主要包括土壤淋洗和化学氧化还原技术等,这些技术对面积小和污染重的土壤修复效果较好,但对渗透性差的土壤修复效果不明显,会破坏原有的土壤结构和生态系统,亦有引起二次污染的潜在危害。 生物修复技术包括植物修复和微生物修复技术等,尽管具有物理修复和化学修复技术无可比拟的优越性,费用较低,是环境友好型修复技术,但修复时间长,且任何一种技术都不能很好地对有机物污染土壤进行单独修复。这些传统修复技术的缺点严重制约了有机污染土壤修复的效率和发展。 随着科技的发展和科技人员对修复技术的不断创新,纳米材料(粒径为1~100nm)修复技术作为一种高效、经济的有机污染土壤修复技术为人们提供了新的研究机遇。 与传统有机污染土壤的修复技术相比,纳米材料具有巨大的比表面积、超强的吸附螯合能力和优秀的催化活性,使得纳米材料修复技术克服了传统修复技术的部分缺点,在有机污染土壤修复中表现出极高的修复效率。 近年来,环境友好型纳米材料修复有机污染土壤的研究已成为国内外关注的热点,主要集中在纳米材料的制备、结构表征、污染物去除机制和去除效率等方面。本文综述了目前国内外纳米材料去除土壤有机污染物的研究进展,总结了纳米材料能够发挥实用性所具备的性质,以期为今后纳米材料修复有机污染土壤研究提供借鉴。 1纳米材料在有机污染土壤修复中的应用 1.1金属类纳米材料及其改性技术 1.1.1纳米零价铁(Nanoscalezero-valentiron,nZVI) nZVI因具有修复费用低,环境扰动小和健康风险低等优良特点被广泛应用于有机污染水体和土壤的修复领域。nZVI的比表面积可以高达140m2˙g-1,而传统的颗粒铁粉只有1.8m2˙g-1。与传统的颗粒铁粉相比,nZVI具有粒径小、比表面积大、表面吸附能力强、反应活性强、高还原效率和高还原速率等优点。 Wang等研究发现,nZVI对三氯乙烯(TCE)和PCBs的还原脱氯速率常数是传统颗粒铁粉的10~100倍。 Reddy等在应用nZVI和传统颗粒铁粉降解土壤中的毒死蜱时发现,nZVI的降解率为90%,而传统颗粒铁粉的降解率仅为32%。 nZVI降解有机污染物主要通过吸附和还原作用。在降解的初始阶段,nZVI因其巨大的比表面积具有强的吸附能力,在反应体系中nZVI发生电极反应,产生亚铁离子(Fe2+)和氢气(H2),在降解过程中,具有强还原能力的nZVI、Fe2+和H2作为还原剂提供电子,与环境中的有机污染物发生反应,并将其转化为对环境相对无害的小分子。 Reddy等研究还发现,nZVI可在10d内通过水解作用和还原脱氯作用降解土壤中90%的毒死蜱。 Satapanajaru等认为,nZVI在1个月内主要通过还原脱氯作用降解了52%的莠去津(0.02mg˙g-1)。 Chang等发现,增加nZVI的浓度可以有效提升其对芘的降解效率,并在降解的过程中产生氢氧化物,将土壤的pH值从4.8增加到8.5,氧化还原电位从+400mV变为-500mV,形成更利于降解有机污染物的强还原环境。 一般认为作为电子供体的nZVI需要在缺氧环境中才能还原分解有机污染物,溶解氧或水的存在会降低其反应活性和降解效率。但是Gomes等发现,即使反应体系存在空气和水,nZVI仍可以在短时间内降解接近80%的草达灭农药污染物。 Joo等在研究nZVI降解除草剂草达灭时发现,在无氧条件下的脱氯率很低,但在有氧条件下3h内降解率可达70%,脱氯率远高于无氧环境,因此推测其反应机制为氧化反应。目前对类似情况的解释主要为:在富氧环境中nZVI表面被氧化,形成“氧化铁/氢氧化铁”外壳,这层外壳可以有效地吸附有机污染物,并为铁与污染物提供有效的电子转移通道,此外nZVI会在反应过程中形成羟基自由基(OH˙)和过氧化氢(H2O2)降解有机污染物。 1.1.2改性纳米零价铁 尽管nZVI在降解土壤有机污染物时表现出强的吸附和还原脱氯性能,但是裸露的nZVI容易发生团聚,易被介质中的水或溶解氧氧化并形成钝化层,甚至有些nZVI会在氧化环境中发生自燃,导致其在土壤中的反应活性和迁移能力迅速降低,最后难以达到降解目标有机污染物的目的。 Comba等通过分析112个现场修复实例发现,裸露nZVI对污染物的修复效果只有65%,明显小于预期修复效果。因此人们通过改性的方式提高nZVI的稳定性、迁移能力和反应活性,目前研究最多且表现优异的改性方式主要包括表面包覆钝化、聚合物表面修饰、固相负载和双金属复合等。 表面包覆钝化是针对裸露型nZVI易被氧化的缺点进行的改性方法,使用氧化铁、聚合物、二氧化硅或活性炭等进行包覆,防止nZVI被氧化和团聚。 李勇超等合成了由二氧化硅包覆的钝化nZVI复合材料,与未包覆的nZVI相比具有更好的分散性。若包覆的材料是亲脂性材料,那么形成的复合材料与有机污染物的亲和力会明显提升,在有机相中的分散性和迁移能力会大大提高。 Berge等利用乳化液包覆的nZVI和裸露型nZVI分别降解TCE,均能得到以乙烯为主的副产物且降解速率相当,重要的是乳化液包覆的nZVI在多孔介质中的迁移能力有所提高。但是,经过乳化液修饰的nZVI相对黏度较高,容易粘附在目标污染物区域外的颗粒物上,在实施时需要高压注射,这一过程会影响nZVI复合材料乳化液外层的稳定性。 聚合物表面修饰是通过聚合物或聚合电解质修饰nZVI的表面,其原理是通过提高位阻和电荷斥力增强纳米材料的分散性,并提高nZVI在土壤中的稳定性和迁移能力。由于土壤颗粒一般带有负电荷,当整体环境pH值为中性时,土壤内含水物质表面会带有负电荷,经过修饰后带有正电荷的nZVI会受到静电引力的影响吸附在土壤颗粒或者含水物质表面,降低了nZVI的迁移能力,因此只有经过带负电荷聚合物或聚合电解质修饰的nZVI才能应用到实际修复过程中。 通常来说,nZVI表面添加的修饰剂越多,与环境间的电斥力就越大,材料也就越稳定。考虑到小分子量的修饰剂容易被微生物降解和脱附,经大分子量的聚合物或聚合物电解质修饰的纳米材料会更稳定。 Saleh等设计了nZVI-聚甲基丙烯酸-聚甲基丙烯酸甲酯-聚苯乙烯磺酸复合纳米材料,聚甲基丙烯酸可以强烈吸附在被氧化的nZVI表面,聚甲基丙烯酸-聚甲基丙烯酸甲酯保证了nZVI的疏水性,避免被土壤中的溶解氧或水氧化,从而维持了nZVI的稳定性。聚苯乙烯磺酸提供了强大的电斥力,避免nZVI吸附到环境中的负电颗粒上,这种多层修饰比单独聚苯乙烯磺酸修饰的nZVI更稳定。 实验证明,多层修饰的nZVI静置7h后仍有60%保持稳定,而只经过聚苯乙烯磺酸修饰的nZVI为40%,未经修饰的nZVI在1h内即完全沉淀。通常情况下,在合成nZVI之后添加修饰剂进行修饰会降低nZVI的反应活性,相反,在合成前针对性添加修饰剂会增加反应活性,其原因是合成前加入修饰剂使Fe2+与聚合物携带的官能团形成稳定的配合物,阻止大粒径nZVI的成核和凝聚,Fe2+与官能团的相互作用越强、结合密度越大,聚合物的分子量越大,所形成的nZVI复合物粒径就越小。 固相负载是将nZVI负载到硅、碳或树脂等固体载体上,降低nZVI的团聚并提升其在多孔介质中的迁移能力。试验表明,在相同反应时间内,单独使用nZVI降解阿莫西林的效率为81.7%,而经过膨润土负载的nZVI对阿莫西林降解效率增大至92.7%,比负载前提高11.0%。 刘凯等用有机改性蒙脱石(CMt)为载体制备出固体负载型nZVI,促进了nZVI的迁移能力,明显增强了nZVI对4-氯酚的降解能力。 双金属复合是在裸nZVI表面附着一种贵金属,其合成主要利用还原沉积作用来完成。目前常见的双金属复合纳米材料为Ni/Fe、Pt/Fe和Pd/Fe等,这些复合物可以减缓nZVI的氧化过程,有助于其活性的保持,同时以Fe作为电子供体,Ni、Pt和Pd等贵金属作为催化剂,大幅提升了nZVI降解有机污染物的速率。另外,两种金属间的电位差可以在材料表面形成原电池促进电子转移,减少二次污染副产物的形成,使降解更彻底。 Elliott等使用Pd/Fe降解有机氯污染物时发现,Pd的催化作用促进了nZVI的还原脱氯效率,降解速率是单独使用nZVI时的50倍以上,并且Pd/Fe处理后的降解产物甲烷占74%,而nZVI的主要产物为乙醚(62%)。但是双金属复合nZVI也有其应用限制,昂贵的贵金属导致合成成本升高,实际应用价值降低,对土壤环境引入重金属会影响微生物的生长,是对环境不利的选择,同时也存在通过食物链富集影响人类健康的潜在威胁。 经过不同改性方法制备的nZVI具有不同的理化性质,在有机污染土壤修复过程中表现出不同的稳定性、反应活性和迁移能力。 表面包覆钝化在防止nZVI被氧化及团聚的同时降低了nZVI在土壤中的迁移能力;聚合物表面修饰能够提高nZVI的稳定性及在土壤中的迁移能力,但在添加修饰剂时需考虑修饰剂的性质,合成nZVI之后的修饰会降低nZVI的反应活性;固相负载能够提高nZVI在土壤中的迁移能力,降低其在环境中的团聚;双金属复合能够大幅提高nZVI的降解速率并使降解更完全,但贵金属价格昂贵限制其大量生产,同时贵金属添加到土壤中后影响微生物的生长,并可通过生物富集影响人类健康。 因此,使用改性nZVI修复有机污染土壤时,应根据污染物类型和土壤性质选择合适的改性方法,在保证nZVI稳定性、反应活性和迁移能力的同时,尽量避免对环境造成二次污染。 1.1.3纳米二氧化钛(TiO2) 纳米材料光催化降解土壤有机污染物技术是一种新型的处理技术,对多种有机物有明显的降解效果,其安全、高效的特征为土壤有机污染物的降解提供了良好的途径。具有能带结构的纳米TiO2能够吸收波长低于387nm(3.2eV)的紫外光的辐射能量,价带上的电子受到激发跃迁至导带,在导带上形成高活性电子,同时在价带上生成带正电的空穴,电子-空穴可以与吸附在纳米TiO2表面的溶解氧、氢氧根或水分子发生一系列的化学反应最终生成羟基自由基和超氧离子,以此氧化分解有机污染物。 在自然条件下,直接的光降解作用被限制在土壤表面,添加纳米TiO2可以提高土壤表面4~10cm处有机污染物的降解效率。不同能量光照下,纳米TiO2降解有机污染物得到的降解产物不同。 Zhao等使用20mg˙g-1的纳米TiO2降解0.0012mg˙g-1的2,2-双(4-氯苯基)-1,1,1-三氯乙烷(p,p’-DDT)时发现,在紫外光下的降解产物为2,2-双(4-氯苯基)-1,1,1-二氯乙烯(DDE)和二氯二苯二氯代甲烷(DDD)且降解率为27%,但在可见光下的降解产物仅为DDD且降解率为8%,在可见光下发生的是脱氯作用,而在紫外光的作用下是脱氯化氢作用,表明能量是纳米TiO2光降解有机污染物的重要因素。虽然自然条件下难以改变光照的能量,但是可以通过改变纳米TiO2的禁带宽度,降低光降解时受激发所需要的能量来实现可见光下纳米TiO2对有机污染物的高效降解。 与nZVI相比,纳米TiO2通过自由基反应将有机污染物氧化分解为CO2和H2O等无害物质,并可将环类物质氧化开环,但是这种自由基反应没有选择性,会优先降解高浓度的有机污染物,而低浓度高毒性有机污染物得不到有效降解。因此,可以通过改性的方式使纳米TiO2选择性吸附并优先降解低浓度高毒性的有机污染物。 1.1.4改性纳米二氧化钛 在实际应用中单纯的纳米TiO2存在光吸收波长窄、太阳能利用率低和量子效率低等缺点,这些不足之处可以通过对纳米TiO2的改性来弥补。对纳米TiO2的改性一般包括:表面电荷调控、禁带宽度调控、有机配体改性和固相负载等。 表面电荷调控是将纳米TiO2表面带有正、负电荷与带有异性电荷的有机污染物异性相吸,从而达到选择性降解目标有机污染物的目的。其方法包括:通过化学处理将纳米TiO2与带电材料杂化,使其表面带有正、负电荷;通过调整土壤环境体系的pH值,当pH>6.5(TiO2等电点)时TiO2表面带负电,pH<6.5时TiO2表面带正电,以此选择性吸附带有异性电荷的污染物并进行光催化降解。 禁带宽度调控一般可通过金属离子的掺杂来完成,这一过程可以有效地使纳米TiO2光响应范围产生红移,降低光降解时受激发所需要的能量。Kadam等利用微波法将金属Sn(0.25%)掺杂在纳米TiO2表面,使纳米材料的光响应范围产生明显红移,在太阳光下120min内降解了95%的甲基橙,降解效率比单独使用纳米TiO2时高出7倍。 有机配体改性是利用精氨酸、β-环糊精或八烷基三乙氧基硅烷(C8)等对纳米TiO2直接进行改性,修饰上的分子与目标污染物有特异相互作用,从而对目标污染物实现选择性吸附降解。Ahn等利用精氨酸中羧基与纳米TiO2间的配位作用将精氨酸嫁接在纳米TiO2表面,再利用精氨酸与硝基类化合物硝基的分子间作用力,选择性吸附硝基类化合物如对硝基苯酚,从而实现对这一类化合物的选择性降解。 固相负载是将纳米TiO2固定到硅胶、活性炭、高聚物、氧化铝或沸石分子筛等多孔吸附剂载体上,合适的载体可以增加发生反应的有效比表面积、提供合适的孔结构、提高热稳定性和抗毒性能等。 Calza等研究发现,小分子污染物易进入微孔分子筛ETS-10(钛硅酸盐分子筛)的孔道被保护起来,大分子污染物不易进入孔道而被降解,在催化降解苯酚和2,3-二羟基萘酚(2HPP)的混合物时,降解2HPP的速率是降解苯酚的56倍,而利用HF处理后的微孔分子筛,降解2HPP的速率是降解苯酚的127倍,主要原因是小分子的苯酚可以进入分子筛孔道受到保护,2HPP这样的大分子未能进入分子筛孔道而被降解,从而实现了选择性光催化降解。这是目前设计选择性光催化剂的较好思路之一。