《美国国家标准与技术研究院(NIST)为单光子探测器构建出基于超导的KICS系统用于捕捉TES信号》

  • 来源专题:计量基标准与精密测量
  • 编译者: 张宇
  • 发布时间:2024-12-09
  • 能够检测可见光中单个光子的传感器对于从暗淡的遥远星系成像到量子计算和DNA测序等应用都变得至关重要。近日,美国国家标准与技术研究院(National Institute of Standards and Technology, NIST)的研究人员现在已经设计出一种更简单且可能更精确的系统,用于读取大量最灵敏的单光子探测器的测量结果。

    这些被称为过渡边缘传感器(Transition Edge Sensors, TES)的高灵敏度探测器由NIST开发和完善,它们由一层超薄的金属膜组成,其温度保持在超导(零电阻状态)和正常电阻之间的临界状态下。当辐射击中单个TES探测器时,它会使其提高温度并增加TES的电阻,这表现为电流的变化。单个光子携带的能量越多,产生的信号就越大。

    感应电流的变化其实非常小,必须通过特殊的识别系统进行放大。通常,研究人员使用超导量子干涉装置(Superconducting Quantum Interference Device, SQUID),它将TES中的微小电流变化转换为被放大的磁信号。

    尽管大量SQUIDs已被用于识别无线电波和X射线波长产生的数百到数千个像素的光子在TES中所产生的感应电流,但它们的运行速度太慢,无法从多个检测可见光光子的TES设备中收集数据。此外,SQUIDs相对笨重,很难部署在需要数千个紧密排列的TES设备的新应用系统中使用。

    为了克服这些缺点,NIST和科罗拉多大学博尔德分校的Paul Szypryt和他的同事用另一种称为动态感应电流传感器(Kinetic Inductance Current Sensor, KICS)的识别系统取代了SQUIDs。每个KICS都由一个超导体构成,该超导体在特定频率下自然共振。当来自TES的电流脉冲通过电路时,KICS会改变其共振频率。重要的是,这些频率变化足够快,以至于每个KICS阵列都可以同时读取来自数千个可见光TES传感器的信号。

    KICS的另一个优势是:它大大减少了电子噪声的一个主要来源。为了最大限度地提高KICS电路的灵敏度,必须向该设备施加直流电,或称为偏置电流。但如果持续提供该电流,它可能会产生一个虚假的电子信号。而KICS是超导体构成的,它可以在这种无电阻电路中捕获并永久保留偏置电流。因此,信号捕获的过程中只需对KICS施加一次直流电,从而有效减少了虚假信号,使KICS系统能够非常准确地读取TES电流。

    Paul Szypryt和他的同事,以及来自意大利米兰比可卡大学的科学家们,于11月6日在《Communications Engineering》期刊上发布了他们的研究成果。(DOI:10.1038/s44172-024-00308-y)

  • 原文来源:https://www.nist.gov/news-events/news/2024/12/just-kics
相关报告
  • 《美国国家标准与技术研究院(NIST)通过3D立体深度传感器进行影响噪声的因素研究》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2025-04-29
    • 3D 立体深度传感器在许多领域都有广泛应用,包括自动驾驶汽车的传感、逆向工程和制造自动化等。这些传感器的性能会受到多种因素的影响,例如传感器结构、传感器技术、传感器设置、环境等。为了对这些传感器进行表征以及制定相关标准,需要了解影响传感器输出的参数。随着机器学习(ML)在 3D 点云和深度数据方面的应用日益普及,了解这些模型使用的数据对于提高此类深度传感器的采用率至关重要。在某些领域中,传感器噪声和瞬态效应可能会成为主导因素。在将传感器数据与ML算法结合使用之前降低噪声对于提高算法准确性是必要的。为了对深度传感器进行表征,我们使用具有不同光泽度、颜色和纹理/图案的目标进行了实验。此外,我们还通过研究传感器参数(如曝光、增益和激光功率)来探究传感器数据质量和噪声。我们发现在传感器捕获的 2D 图像和深度数据中都存在瞬态效应。这些实验有助于为特定应用提供可能建议的操作条件以及针对这些传感器的未来标准。 会议录下载链接:https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=959923
  • 《美国国家标准与技术研究院(NIST)研究人员使用红外透射成像的新方法测量活细胞中的生物分子》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2024-09-14
    • 近日,美国国家标准与技术研究院(NIST)的科学家首次使用红外(IR)透射成像技术捕捉到水中单个活细胞中生物分子的清晰图像。IR技术使研究人员能够测量细胞中生物分子(如蛋白质)的质量。该方法使用简单的组件,有可能促进生物制药和细胞疗法等方面的进步。 为了加速生物科技的创新,例如研发拯救生命的药物疗法,科学家们正努力开发更快、更定量和更广泛可用的方法来观察活细胞中的生物分子。 NIST的研究人员开发了一种新方法,该方法可以通过红外(IR)光来捕捉细胞内生物分子的清晰图像,因为细胞中的水倾向于吸收红外辐射,所以这在以前的是不可能实现的。新方法消除了基于红外测量中水的模糊效应,并使研究人员能够确定细胞中关键生物分子的数量,例如指导细胞功能的蛋白质。能够测量活细胞中生物分子变化的能力可以加速生物制药和细胞疗法等方面的进步。 红外辐射是刚好超出人眼可见范围的光。虽然我们看不到红外光,但我们可以感觉到它的热量。在红外显微镜中,特定的材料会吸收红外光谱中一系列波长的辐射。科学家测量并分析样品的红外吸收光谱,产生一组“指纹”来识别分子和其他化学结构。然而,水是细胞内外最丰富的分子,它会强烈的吸收红外光,并掩盖细胞中其他生物分子对红外光的吸收。 理解这种光学掩蔽效果的一种方法是将其比作一架飞机从头顶经过太阳旁边时的情景。由于太阳的光芒太过耀眼,所以用肉眼很难看到飞机,但如果你使用一种特殊的太阳遮挡滤镜,那么你就可以很容易地在天空中看到飞机。 NIST 化学家 Young Jong Lee 表示:“在光谱中,水对红外线的吸收能力非常强,我们希望透过浓厚的水背景看到蛋白质的吸收光谱,因此我们设计了光学系统来消除水的模糊效应并揭示蛋白质信号。 Lee开发了一种获得专利的技术,该技术使用光学元件来补偿 IR 的吸水率。这种称为溶剂吸收补偿(SAC)的技术与手工制造的红外激光显微镜一起使用,可对支持结缔组织形成的细胞(称为成纤维细胞)进行成像。在 12 小时的观察期内,研究人员能够在细胞周期的各个阶段(例如细胞分裂)识别生物分子组(蛋白质、脂质和核酸)。虽然这看起来像是很长的时间,但该方法最终比目前的替代方案更快,后者需要在大型同步加速器设施中占用束流时间。 这种称为 SAC-IR(溶剂吸收补偿-红外)的新方法是无需标记的,这意味着它不需要任何染料或荧光标记物,这些染料或荧光标记可能会损伤细胞,并且在不同实验室之间产生的结果也不太一致。 SAC-IR的方法使 NIST 研究人员能够测量细胞中蛋白质的绝对质量,以及核酸、脂质和碳水化合物。该技术有助于为标准化测量细胞中生物分子的方法奠定基础,这项技术被证明在生物学、医学和生化技术研究中是大有可为的。 “例如,在抗癌细胞疗法中,从患者体内提取出的免疫细胞被训练后,达到可以更好地识别和杀死癌细胞的效果,然后再将这些免疫细胞重新注射到患者体内,人们不禁会问,'这些细胞安全有效吗?'我们的方法可以通过监测有关细胞内生物分子的更多形态变化来帮助评估细胞的健康状况,“Lee 表示。 其他潜在应用包括使用细胞进行药物筛选,无论是在研发新药还是评估候选药物的安全性和有效性方面。例如,这种方法可以通过测量大量单个细胞中各种生物分子的绝对浓度来帮助评估新药的效力,或者分析不同类型的细胞对药物的反应。 研究人员希望进一步开发这项技术,以便能够更准确地测量其他关键生物分子,例如 DNA 和 RNA。该技术还有助于为细胞生物学中的基本问题提供详细的答案,例如哪些生物分子特征与细胞活力相对应——换句话说,就是细胞是活着的、奄奄一息的、还是已经死亡的。 “一些细胞在冷冻状态下被保存数月或数年,然后解冻以备后用。我们还没有完全掌握在解冻细胞的同时保持其最大的活性的能力。但凭借我们新的测量能力,我们可能能够通过观察它们的红外光谱来帮助开发更好的细胞冻融流程,“Lee 表示。 相关研究成果已于2024年9月4日发表在《Analytical Chemistry》期刊上(DOI:10.1021/acs.analchem.4c02108)。