发表于《自然-机器智能》(Nature Machine Intelligence)的一项研究中,阿赫特伯格、阿卡尔卡及其同事创建了一个人工系统,旨在模拟一个非常简化的大脑模型,并应用了物理约束。他们发现,他们的系统进而发展出了某些与人类大脑相似的关键特征和策略。
该系统使用的是计算节点,而不是真正的神经元。神经元和节点的功能类似,都是接收输入、转换输入并产生输出,而且单个节点或神经元可能连接多个其他节点或神经元,所有输入的信息都要进行计算。
然而,在他们的系统中,研究人员对系统施加了 "物理 "限制。每个节点在虚拟空间中都有一个特定的位置,两个节点离得越远,它们就越难沟通。这与人脑中神经元的组织方式类似。
研究人员给该系统布置了一个简单的任务--在这种情况下,它要完成的是一个简化版的迷宫导航任务,通常是在研究大脑时给大鼠和猕猴等动物布置的任务,它必须结合多种信息来决定到达终点的最短路线。
研究小组选择这项特殊任务的原因之一是,要完成这项任务,系统需要保持一系列要素--起始位置、终点位置和中间步骤--一旦学会可靠地完成任务,就有可能在试验的不同时刻观察到哪些节点是重要的。例如,一个特定的节点集群可能编码终点位置,而其他节点集群则编码可用路线,因此可以跟踪哪些节点在任务的不同阶段处于活动状态。
起初,系统不知道如何完成任务并会犯错。但当系统得到反馈后,它就会逐渐学会如何更好地完成任务。它通过改变节点间连接的强度来学习,这与我们学习时脑细胞间连接强度的变化类似。然后,系统会一遍又一遍地重复任务,直到最终学会正确执行任务。
然而,在他们的系统中,物理限制意味着两个节点离得越远,就越难根据反馈在两个节点之间建立连接。在人脑中,跨越较大物理距离的连接的形成和维持都非常昂贵。
当系统被要求在这些限制条件下执行任务时,它使用了一些与真实人脑相同的技巧来解决任务。例如,为了绕过这些限制,人工系统开始发展集线器--高度连接的节点,作为整个网络传递信息的通道。
然而,更令人惊讶的是,单个节点本身的反应特征也开始发生变化:换句话说,系统中的每个节点不再为迷宫任务的某一特定属性(如目标位置或下一个选择)编码,而是发展出一种灵活的编码方案。这就意味着,在不同的时刻,节点可能会对迷宫的各种属性进行编码。例如,同一个节点可以对迷宫的多个位置进行编码,而不需要专门的节点对特定位置进行编码。这是复杂生物大脑的另一个特点。