《EEKE-AII2024会议征稿通知》

  • 来源专题:数智化图书情报
  • 编译者: 于彰淇
  • 发布时间:2023-12-07
  • Call for Papers


    You are invited to participate in the Joint Workshop of the 5th Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2024) and the 4th AI + Informetrics (AII2024), to be held as part of the iConference2024, Changchun, China and Online, April 22 - 26, 2024

    https://eeke-workshop.github.io/2024

    Aim of the Workshop




    In the era of big data, massive amounts of information and data have dramatically changed human civilization. The broad availability of information provides more opportunities for people, but a new challenge is rising: how can we obtain useful knowledge from numerous information sources. A knowledge entity is a relatively independent and integral knowledge module in a special discipline or a research domain [1]. As a crucial medium for knowledge transmission, scientific documents that contain a large number of knowledge entities attract the attention of scholars [2]. Complementarily, informetrics, known as the study of quantitative aspects of information, has gained great benefits from artificial intelligence (AI), with its capacities in analyzing unstructured scalable data and streams, understanding uncertain semantics, and developing robust and repeatable models. Incorporating informetrics with AI techniques has demonstrated enormous success in turning big data into big value and impact. For example, deep learning approaches enlighten studies of pattern recognition and further leverage time series to track technological change. However, how to effectively cohere the power of AI and informetrics to create cross-disciplinary solutions is still elusive from neither theoretical nor practical perspectives.

    This workshop aims to engage related communities in open problems in the extraction and evaluation of knowledge entities from scientific documents and AI + Informetrics. Specifically, knowledge entities in scientific documents may include method entities, tasks, dataset and metrics, software and tools, etc [3]. Knowledge entity application includes the construction of a knowledge entity graph and roadmap, modeling functions of knowledge entity citations, etc. There are some online platforms based on knowledge entities, e.g., SAGE Research Methods and ‘SOTA’ project. In parallel, this workshop also targets certain unsolved issues in AI + Informetrics and a wide range of its practical scenarios including: Cohering AI and informetrics to fulfill cross-disciplinary gaps from either theoretical or practical perspectives; elaborating AI-empowered informetric models with enhanced capabilities in robustness, adaptability, and effectiveness, and leveraging knowledge, concepts, and models in information management to strengthen the interpretability of AI + Informetrics to adapt to empirical needs in real-world cases [4].

    This joint workshop entitles these two cutting-edge and cross-disciplinary directions as:Extraction and Evaluation of Knowledge Entity (EEKE), highlighting the development of intelligent methods for identifying knowledge entities from scientific documents, and promoting their application in broad information studies.AI + Informetrics (AII), emphasizing endeavors in interacting AI and informetrics by constructing fundamental theories, developing novel methodologies, bridging conceptual knowledge with practical uses, and creating real-word solutions.

    This workshop is to gather researchers and practical users to open a collaborative platform for exchanging ideas, sharing pilot studies, and scoping future directions on this cutting-edge venue.

    Workshop Topics


    This workshop is primarily designed for academic researchers in broad information and library sciences, science of science, artificial intelligence, and will also be of interest to librarians, ST&I administrators and policymakers, and practitioners in any related sectors.

    We invite stimulating research on topics including, but not limited to, methods of knowledge entity extraction and applications of knowledge entity. Specific examples of fields of interest include:Task and methodology from scientific documentsModel and algorithmize entity extraction from scientific documentsDataset and metrics mention extraction from scientific documentsSoftware and tool extraction from scientific documentsKnowledge entity summarizationRelation extraction of knowledge entityModeling function of knowledge entity citationInformetrics with machine learning (including deep learning)Informetrics with natural language processing or computational linguisticsInformetrics with computer visionInformetrics with other related AI techniques (e.g., information retrieval)AI for science of scienceAI for science, technology, & innovationAI for research policy and strategic managementApplication of knowledge entity extractionApplications of AI-empowered informetrics

    Submission Information


    All submissions must be written in English, following the CEUR-ART style and should be submitted as PDF files to EasyChair.Regular papers:  10 pages for full papers and 4 pages for short papers exclusive of unlimited pages for references.Poster & demonstration: We welcome submissions detailing original, early findings, works in progress and industrial applications of knowledge entities extraction ande evaluation for a special poster session, possibly with a 2-minute presentation in the main session. Some research track papers will also be invited to the poster track instead, although there will be no difference in the final proceedings between poster and research track submissions. These papers should follow the same format as the research track papers but can be shorter (2 pages for poster and demo papers).

    All submissions will be reviewed by at least two independent reviewers. Please be aware of the fact that at least one author per paper needs to register for the workshop and attend the workshop to present the work. In case of no-show the paper (even if accepted) will be deleted from the proceedings and from the program.

    Workshop proceedings will be deposited online in the CEUR workshop proceedings publication service. This way the proceedings will be permanently available and citable (digital persistent identifiers and long term preservation).

    Special Issue



    Accepted submissions will be invited to submit to our special issue in Technological Forecasting and Social Change. More detailed information about this special issue can be visited at: https://eeke-workshop.github.io/2024/si-eeke-aii.html.


    Important Dates



    All dates are Anywhere on Earth (AoE).

    Deadline for submission: February 29, 2024

    Notification of acceptance: March 20, 2024

    Camera ready: March 30, 2024

    Workshop: April 22 2024

    Main Organising Committee



    Chengzhi Zhang (zhangcz@njust.edu.cn) is a professor of Department of Information Management, Nanjing University of Science and Technology, China. He received his PhD degree of Information Science from Nanjing University, China. He has published more than 100 publications, including JASIST, Aslib JIM, JOI, OIR, SCIM, ACL, NAACL, etc. His current research interests include scientific text mining, knowledge entity extraction and evaluation, social media mining. He serves as Editorial Board Member and Managing Guest Editor for 10 international journals (Patterns, IPM, OIR, Aslib JIM, TEL, JDIS, DIM, DI, etc.) and PC members of several international conferences in fields of natural language process and scientometrics. (https://chengzhizhang.github.io/)

    Yi Zhang (yi.zhang@uts.edu.au) works as a Senior Lecturer at the Australian Artificial Intelligence Institute, University of Technology Sydney. He holds dual Ph.D. degrees in Management Science & Engineering and in Software Engineering. His research interests align with intelligent bibliometrics - incorporating artificial intelligence and data science techniques with bibliometric indicators for broad science, technology & innovation studies. He is the recipient of the 2019 Discovery Early Career Researcher Award granted by the Australian Research Council. He serves as the Associate Editor for Technol. Forecast. & Soc. Change, the Editorial Board Member for the IEEE Trans. Eng. Manage., and the Advisory Board Member for the International Center for the Study of Research. (https://www.uts.edu.au/staff/yi.zhang)


    Philipp Mayr ( philipp.mayr@gesis.org) is a team leader at the GESIS - Leibniz-Institute for the Social Sciences department Knowledge Technologies for the Social Sciences (WTS). He received his PhD in applied informetrics and information retrieval from the Berlin School of Library and Information Science at Humboldt University Berlin. He has published in top conferences and prestigious journals in the areas informetrics, information retrieval and digital libraries. His research group focuses on methods and techniques for interactive information retrieval and data set search. He was the main organizer of the BIR workshops at ECIR 2014-2021 and the BIRNDL workshops at JCDL 2016 and SIGIR 2017-2019. (https://philippmayr.github.io/)

    Wei Lu (weilu@whu.edu.cn) is a professor of School of Information Management and director of Information Retrieval and Knowledge Mining Center, Wuhan University. He received his PhD degree of Information Science from Wuhan University, China. His current research interests include information retrieval, text mining, QA etc. He has papers published on SIGIR, Information Sciences, JASIT, Journal of Information Science etc. He serves as diverse roles (e.g., Associate Editor, Editorial Board Member, and Managing Guest Editor) for several journals. (http://39.103.203.133/member/4)

    Arho Suominen (Arho.Suominen@vtt.fi) is Principal Scientist at the VTT Technical Research Centre of Finland and Industrial professor at Tampere University (Finland). Dr. Suominen’s research focuses on qualitative and quantitative assessment of innovation systems with a special focus on quantitative methods. His prior research has been funded by the European Commission via H2020, Academy of Finland, Finnish Funding Agency for Technology, Turku University Foundation and the Fulbright Center Finland. Through the Fulbright program, he worked as Visiting Scholar at the School of Public Policy at the Georgia Institute of Technology. Dr. Suominen has a Doctor of Science (Tech.) degree from the University of Turku and holds an Officers basic degree from the National Defence University of Finland. (https://cris.vtt.fi/en/persons/arho-suominen)

    Haihua Chen (haihua.chen@unt.edu)is a clinical assistant professor in the Department

    of Information Science at the University of North Texas. He has expertise in applied data science, natural language processing, information retrieval, and text mining. He co-authored more than 40 publications in academic venues in both information science and computer science. He is serving as co-editor for The Electronic Library, the guest editor of Information Discovery & Delivery and Frontiers in Big Data special issues, and the reviewer for 14 peer reviewed journals and several international conferences. (https://iia.ci.unt.edu/haihua-chen/)

    Ying Ding (ying.ding@austin.utexas.edu)is Bill & Lewis Suit Professor at School of Information, University of Texas at Austin. She has been involved in various NIH, NSF and European-Union funded projects. She has published 240+ papers in journals, conferences, and workshops, and served as the program committee member for 200+ international conferences. She is the co-editor of book series called Semantic Web Synthesis by Morgan & Claypool publisher, the co-editor-in-chief for Data Intelligence published by MIT Press and Chinese Academy of Sciences, and serves as the editorial board member for several top journals in Information Science and Semantic Web. Her current research interests include data-driven science of science, AI in healthcare, Semantic Web, knowledge graph, data science, scholarly communication, and the application of Web technologies. (https://yingding.ischool.utexas.edu/)

    Programme CommitteeAlireza Abbasi, University of New South Wales (Canberra)

    Andrea Scharnhorst, DANS-KNAW

    Iana Atanassova, CRIT, Université de Bourgogne Franche-Comté

    Marc Bertin, Université Claude Bernard Lyon 1

    Katarina Boland, GESIS - Leibniz Institute for the Social Sciences

    Yi Bu, Peking University

    Guillaume Cabanac, IRIT - Université Paul Sabatier Toulouse 3

    Caitlin Cassidy, Search Technology Inc

    Chong Chen, Beijing Normal University

    Guo Chen, Nanjing University of Science and Technology

    Hongshu Chen, Beijing Institute of Technology

    Gong Cheng, Nanjing University

    Jian Du, Peking University

    Edward Fox, Virgina Tech

    Ying Guo, China University of Political Science and Law

    Arash Hajikhani, VTT Technical Research Centre of Finland

    Saeed-Ul Hassan, Information Technology University

    Jiangen He, The University of Tennessee

    Zhigang Hu, South China Normal University

    Bolin Hua, Peking University

    Ying Huang, Wuhan University

    Yong Huang, Wuhan University

    Yuya Kajikawa, Tokyo University of Technology

    Vivek Kumar Singh, Banaras Hindu University, Varanasi, U.P., India

    Chenliang Li, Wuhan Univerisity

    Kai Li, University of Tennessee

    Chao Lu, Hohai University

    Shutian Ma, Tencent

    Jin Mao, Wuhan University

    Xianling Mao, Beijing Institute of Technology

    Chao Min, Nanjing University

    Wolfgang Otto, GESIS - Leibniz-Institute for the Social Sciences

    Xuelian Pan, Nanjing University

    Dwaipayan Roy, GESIS - Leibniz-Institute for the Social Sciences

    Philipp Schaer, TH K?ln (University of Applied Sciences)

    Mayank Singh, Indian Institute of Technology Gandhinagar

    Bart Thijs, ECOOM, MSI, K.U.Leuven

    Suppawong Tuarob, Mahidol University

    Dongbo Wang, Nanjing Agricultural University

    Xuefeng Wan,g Beijing Institute of Technology

    Yuzhuo Wang, Anhui University

    Dietmar Wolfram, University of Wisconsin-Milwaukee

    Jian Wu, Old Dominion University

    Mengjia Wu, University of Technology Sydney

    Tianxing Wu, Southeast University

    Xiaolan Wu, Nanjing Normal University

    Yanghua Xiao, Fudan University

    Jian Xu, Sun Yat-sen university

    Shuo Xu, Beijing University of Technology

    Erjia Yan, Drexel University

    Heng Zhang, Nanjing University of Science and Technology

    Jinzhu Zhang, Nanjing University of Science and Technology

    Xiaojuan Zhang, Southwest University

    Yingyi Zhang, Soochow University

    Zhixiong Zhang, National Science Library, Chinese Academy of Sciences

    Qingqing Zhou, Nanjing Normal University

    Yongjun Zhu, Yonsei University


    References

    Chang, X., Zheng, Q. (2008). Knowledge Element Extraction for Knowledge-Based Learning Resources Organization. In: Leung, H., Li, F., Lau, R., Li, Q. (eds) Advances in Web Based Learning – ICWL 2007. ICWL 2007. Lecture Notes in Computer Science, vol 4823. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78139-4_10Ying, D., Min, S., Jia, H., Qi, Y., Erjia, Y., Lili, L., Tamy, C. entitymetrics: measuring the impact of entities. Plos One, 2013, 8(8), e71416. https://doi.org/10.1371/journal.pone.0071416Zhang, C., Mayr, P., Lu, W., & Zhang, Y. (2022). JCDL2022 workshop: extraction and evaluation of knowledge entities from scientific documents (EEKE2022). In Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries (JCDL '22). Association for Computing Machinery, New York, NY, USA, Article 54, 1–2. https://doi.org/10.1145/3529372.3530917Zhang, Y., Zhang, C., Mayr, P., & Suominen, A. An editorial of “AI?+?informetrics”: multi-disciplinary interactions in the era of big data. Scientometrics 127, 6503–6507(2022). https://doi.org/10.1007/s11192-022-04561-w

    Links

    Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE)Workshop on AI + Informetrics (AII)

    Past Proceedings & Journal Special Issues


    Proceedings can be accessed at http://ceur-ws.org/. Proceedings of EEKE-AII 2023Proceedings of EEKE 2022Proceedings of EEKE 2021Proceedings of EEKE2020Proceedings of AII 2021

    We have organized the related special issues on the topic of extraction and evaluation of knowledge entities in the following journals:Aslib Journal of Information ManagementScientometricsJournal of Data and Information ScienceData and Information Management

    We have organized the related special issues on the topic of AI + Informetrics in the following journals:Information Processing and ManagermentScientometrics

  • 原文来源:https://mp.weixin.qq.com/s/Na2QE2-nsjZ4qiX1OMoQcg
相关报告
  • 《征文 |《isic会议》征稿通知》

    • 来源专题:数智化图书情报
    • 编译者:杨小芳
    • 发布时间:2023-12-30
    • ISIC会议是信息行为研究社区的学术家园。这个每两年举行一次的会议,专注于各种形式的情境化信息活动,如“信息行为”、“信息实践”、“信息寻求”、“信息体验”等。 ISIC会议是一个研究信息的平台,它超越了对技术方面的单一关注,探索了各种各样的情境。ISIC会议促进了受到信息科学、信息研究、图书馆研究、通信研究、计算机科学、学习和教育、信息管理、信息系统、管理科学、心理学、社会心理学、社会学等领域影响的信息研究的跨学科研究。 ISIC会议是一个广泛而开放的社区,参会者可以在一个充满活力、友好和包容的会议环境中参与。 征稿通知: 中心主题围绕着人们与信息的情境化互动和信息活动的参与,以不同的形式表达,如“信息行为”、“信息实践”、“信息寻求”和“信息体验”。会议是一个研究探索信息寻求的平台,作为一个丰富的研究场所,超越了对技术方面的单一关注,探索了各种各样的背景。被录用的论文将在《Information Research》上发表。 会议的主题 会议主题包括但不限于以下内容: 1.对信息需求、寻求、搜索、使用和分享的文化、社会、认知、情感和情境方面的理论概念化。 2.采用和发展定性、定量和混合方法的研究方法和方法论。 3.具体情况:例如,在不同部门和组织(卫生保健、教育、文化遗产、图书馆、商业、工业、公共服务和政府、应急服务等);在日常生活中,在社交网络中,包括社交媒体、游戏或虚拟世界。 4.协同信息实践:社区、边界跨越和创新实践。 5.信息的使用和价值:信息的含义以及如何使用信息来帮助解决问题,帮助或支持决策。 6.信息在建立和增强组织适应能力中的作用:战略和信息吸收、转换和整合。 7.跨学科贡献:整合信息检索与交互检索研究将信息科学与管理科学相结合。 8.当代社会信息活动的批判性调查。 9.与传播威胁社会、社区和经济发展的虚假和误导性信息有关的研究和行动。 10.信息行为研究在实践基础上的应用,以提高决策和解决问题的能力。 重要时间地点: 提交稿件:2024年1月初 注册:2024年3月开始 会议:2024年8月26日至29日 会议地点:奥尔堡大学通信与心理学部,创新大楼,Rendsburggade 14,9000奥尔堡,丹麦。
  • 《第五届科学文献知识实体提取与评估(EEKE2024)与第四届人工智能+信息计量学(AII2024)联合研讨会》

    • 来源专题:数智化图书情报
    • 编译者:杨小芳
    • 发布时间:2024-01-14
    • 征稿启事 我们诚邀您参加2024年4月22日至26日在中国长春举行的第五届科学文献知识实体提取与评估(EEKE2024)和第四届人工智能+信息计量学(AII2024)联合研讨会 https://eeke-workshop.github.io/2024 研讨会的目的 在大数据时代,海量的信息和数据极大地改变了人类文明。信息的广泛可用性为人们提供了更多的机会,但一个新的挑战正在上升:我们如何从众多信息来源中获取有用的知识。知识实体是特定学科或研究领域中相对独立、完整的知识模块[1]。作为知识传播的重要媒介,包含大量知识实体的科学文献吸引了学者的关注[2]。与此相辅相成的是,信息学,即对信息定量方面的研究,已经从人工智能(AI)中获得了巨大的好处,因为它能够分析非结构化的可扩展数据和流,理解不确定的语义,以及开发强大且可重复的模型。将信息计量学与人工智能技术相结合,在将大数据转化为巨大价值和影响方面取得了巨大成功。例如,深度学习方法启发了模式识别的研究,并进一步利用时间序列来跟踪技术变革。然而,从理论和实践的角度来看,如何有效地整合人工智能和信息计量学的力量来创建跨学科的解决方案仍然难以捉摸。 该研讨会旨在让相关社区参与从科学文献和人工智能+信息中提取和评估知识实体的开放性问题。具体而言,科学文献中的知识实体可能包括方法实体、任务、数据集和指标、软件和工具等[3]。知识实体应用包括知识实体图谱和路线图的构建、知识实体引用的建模功能等。有一些基于知识实体的在线平台,例如SAGE研究方法和“SOTA”项目。同时,本次研讨会还针对人工智能+信息计量学中某些未解决的问题及其广泛的实际场景,包括:将人工智能和信息计量学联系起来,从理论或实践的角度填补跨学科的差距;构建人工智能赋能的信息计量模型,增强鲁棒性、适应性和有效性,利用信息管理中的知识、概念和模型,加强人工智能+信息计量学的可解释性,以适应现实世界案例中的实证需求[4]。 是次联合研讨会将这两个前沿和跨学科的方向命名为:知识实体的提取和评估(EEKE),重点介绍从科学文献中识别知识实体的智能方法的发展,并促进其在广泛的信息研究中的应用。AI + Informetrics (AII),强调通过构建基础理论、开发新方法、将概念知识与实际应用联系起来以及创建实际解决方案来努力实现 AI 和信息计量学的交互。 本次研讨会旨在聚集研究人员和实际用户,在这个前沿场所开设一个协作平台,交流思想、分享试点研究并确定未来方向。 研讨会主题 该研讨会主要面向广泛的信息和图书馆学、科学科学、人工智能领域的学术研究人员,图书馆员、ST&I管理人员和政策制定者以及任何相关部门的从业人员也将对此感兴趣。 我们邀请对包括但不限于知识实体提取方法和知识实体应用等主题进行激励性研究。感兴趣的领域的具体示例包括:科学文献中的任务和方法对科学文档中的实体提取进行建模和算法数据集和指标提到从科学文献中提取从科学文献中提取软件和工具知识实体摘要知识实体的关系抽取知识实体引文的建模功能机器学习(包括深度学习)的信息计量学具有自然语言处理或计算语言学的信息计量学计算机视觉信息计量学信息计量学与其他相关人工智能技术(例如,信息检索)人工智能在科学中的应用面向科学、技术和创新的人工智能人工智能在研究政策和战略管理中的应用知识实体抽取的应用人工智能赋能信息计量学的应用 投稿须知 所有提交的内容必须以英文书写,遵循CEUR-ART风格,并应以PDF文件的形式提交给EasyChair。常规论文:全文10页,短篇论文4页,参考文献不限页数。海报和演示:我们欢迎提交作品,详细说明知识实体提取的原始、早期发现、正在进行的工作和工业应用,以及评估,以参加特别的海报会议,可能会在主要会议中进行2分钟的演示。一些研究方向的论文也将被邀请参加海报轨道,尽管海报和研究轨道提交之间的最终程序没有区别。这些论文应遵循与研究轨道论文相同的格式,但可以更短(海报和演示论文为 2 页)。 所有提交的内容将由至少两名独立评审员进行评审。请注意,每篇论文至少需要一名作者注册参加研讨会并参加研讨会以展示工作。如果没有出现,论文(即使被接受)将从会议记录和程序中删除。 研讨会论文集将在线存放在CEUR研讨会论文集出版服务中。这样一来,论文集将永久可用并可引用(数字持久标识符和长期保存)。 所属专题 被接受的投稿将被邀请提交给我们的技术预测和社会变革特刊。有关本期特刊的更多详细信息,请访问:https://eeke-workshop.github.io/2024/si-eeke-aii.html。 重要日期 所有日期都是地球上的任何地方 (AoE)。 投稿截止日期:2024年2月29日  录用通知:2024年3月20日 准备就绪:2024年3月30日  研讨会:2024年4月22日 引用 1. Chang,X.,Zheng,Q.(2008 年)。基于知识的学习资源组织的知识元素提取。在: Leung, H., Li, F., Lau, R., Li, Q. (eds) Advances in Web Based Learning – ICWL 2007.国际妇女委员会,2007年。计算机科学讲义,第 4823 卷。施普林格,柏林,海德堡。https://doi.org/10.1007/978-3-540-78139-4_10 2. Ying, D., Min, S., Jia, H., Qi, Y., Erjia, Y., Lili, L., Tamy, C. 实体指标:衡量实体的影响。公共科学图书馆一号, 2013, 8(8), e71416. https://doi.org/10.1371/journal.pone.0071416 3. Zhang, C., Mayr, P., Lu, W., & Zhang, Y. (2022).JCDL2022研讨会:从科学文献中提取和评估知识实体(EEKE2022)。在第 22 届 ACM/IEEE 数字图书馆联合会议 (JCDL '22) 的论文集中。美国纽约州纽约市计算机协会,第54条,第1-2条。https://doi.org/10.1145/3529372.3530917 4. Zhang, Y., Zhang, C., Mayr, P., & Suominen, A.《AI+信息学:大数据时代的多学科互动》社论。科学计量学 127, 6503–6507(2022)。https://doi.org/10.1007/s11192-022-04561-w