《PNAS文章:Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot》

  • 来源专题:青藏高原所信息监测服务
  • 编译者: 王婷
  • 发布时间:2017-04-06
  • 摘要:A common hypothesis for the rich biodiversity found in mountains is uplift-driven diversification—that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We tested this hypothesis in the context of the Qinghai–Tibetan Plateau (QTP) and adjoining mountain ranges, using the phylogenetic and geographic histories of multiple groups of plants to infer the tempo (rate) and mode (colonization versus in situ diversification) of biotic assembly through time and across regions. We focused on the Hengduan Mountains region, which in comparison with the QTP and Himalayas was uplifted more recently (since the late Miocene) and is smaller in area and richer in species. Time-calibrated phylogenetic analyses show that about 8 million y ago the rate of in situ diversification increased in the Hengduan Mountains, significantly exceeding that in the geologically older QTP and Himalayas. By contrast, in the QTP and Himalayas during the same period the rate of in situ diversification remained relatively flat, with colonization dominating lineage accumulation. The Hengduan Mountains flora was thus assembled disproportionately by recent in situ diversification, temporally congruent with independent estimates of orogeny. This study shows quantitative evidence for uplift-driven diversification in this region, and more generally, tests the hypothesis by comparing the rate and mode of biotic assembly jointly across time and space. It thus complements the more prevalent method of examining endemic radiations individually and could be used as a template to augment such studies in other biodiversity hotspots.

相关报告
  • 《pnas文章:Climate challenges, vulnerabilities, and food security》

    • 来源专题:青藏高原所信息监测服务
    • 编译者:王婷
    • 发布时间:2015-12-31
    • This paper identifies rare climate challenges in the long-term history of seven areas, three in the subpolar North Atlantic Islands and four in the arid-to-semiarid deserts of the US Southwest. For each case, the vulnerability to food shortage before the climate challenge is quantified based on eight variables encompassing both environmental and social domains. These data are used to evaluate the relationship between the “weight” of vulnerability before a climate challenge and the nature of social change and food security following a challenge. The outcome of this work is directly applicable to debates about disaster management policy.
  • 《PNAS文章:Convergence on climate warming by black carbon aerosols》

    • 来源专题:青藏高原所信息监测服务
    • 编译者:王婷
    • 发布时间:2016-05-17
    • 文章摘要: Scientific interest in the climate effects of black carbon (BC) intensified with the publication of Crutzen and Birks’ (1) report dealing with the ejection of large amounts of smoke into the atmosphere after a major nuclear war. A key component of smoke is BC, which is the strongest absorber of visible solar radiation. BC solar absorption became a central issue in climate change research when a synthesis of satellite, in situ, and ground observations concluded (2) that the global solar absorption (i.e., direct radiative forcing, DRF) by atmospheric BC is as much as 0.9 W⋅m−2, second only to the CO2 DRF. BC is also an important component of air pollution, which is plaguing large parts of the world. BC results from poor combustion of fossil fuel, household burning of coal briquettes, wood, and dung as fuel for home heating and cooking practiced by 3 billion people, as well as from agricultural and natural vegetation fires. These fine BC particles thus touch on personal and cultural basics, such as how we cook our food, how we move about, and the quality of the air that we breathe. This air pollution, consisting of BC and other particles, causes worldwide an estimated 7 million premature deaths annually, with most in East and South Asia (3). BC particles are also implicated in large-scale environmental effects, such as melting of the Himalaya and other glaciers (e.g., refs. 4 and 5). BC, along with the coemitted organic aerosols, is a major source of global dimming (2), which has been linked with reduction in precipitation (6). 文章信息:2016.vol 113.no 16.4243-4245