《庞忠和:我国深层含水层地下储热研究取得新进展》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2020-05-25
  • 为加强多种可再生能源综合利用,将不稳定的风能、太阳能转化为稳定连续的地热能,形成基于“地热+”多能互补模式的研究,目前以中国科学院团队为主体承担的国家战略性先导科技专项资助项目---深层含水层地下储热技术研究已从理论模型研究进入到技术研发和工程示范阶段。

    今年年初,中国科学院地质与地球物理研究所黄永辉博士、庞忠和教授等共同撰写的论文《深层含水层地下储热技术的发展现状与展望》发表,获得了业内人士的关注。文章介绍了中国科学院深层含水层地下储热技术研究进展的情况以及该团队提出的地下储热相关设想及展望。

    “深层含水层地下储热技术研究”课题研究的背景和意义是什么?这项技术研究的重点和难点是什么?深层含水层储热技术发展潜力及市场前景如何?日前,《地源热泵》记者采访了中国科学院地质与地球物理研究所研究员庞忠和。

    基于“地热+”多能互补模式研究

    ——由浅层含水层储热向深层含水层储热拓展

    含水层储热是一种利用地下含水层作为介质将热能存储于地下含水层中的储能系统。它通过地下水井从含水层中抽取和灌入地下水实现热能储存和开采利用。根据含水层所处深度,可将含水层储能系统分为两大类:一类是浅层含水层储能,含水层深度在500米以浅,存储热水温度一般低于50℃;另一类是深层含水层储能,含水层深度通常在500米以深,存储热水温度一般为50~150 ℃。

    资料显示,我国在利用浅层地下含水层进行储热方面的实践开展得较早。如20世纪60年代,上海为了控制工业上过度抽取地下水所引起的地面沉降,进行了地下水的人工补给,同时开展了“冬灌夏用”和“夏灌冬用”的地下含水层储热技术。

    基于浅层含水层的储热方式具有成本低的优势,但因其工作温度较低、规模较小,储热能力有限, 且有污染地下饮用水的潜在风险。近年来,世界范围内开始尝试替代方法,即基于深层含水层的高温储热模式。

    庞忠和说,从全世界范围来看,目前各国做的以浅层含水层储热工程居多,深层含水层储能都是刚刚起步。截至2017年,全世界范围内已建成2800多组浅层含水层储热系统,其中我国有6处已建成并投入使用。

    目前,我国在含水层储能技术上的研究和实践多局限于浅层,随着需求的扩大,以中国科学院团队为主体承担的深层含水层地下储热研究项目已启动,其深度将达到500米或者1000米深左右。“我们这个项目计划是四年时间,今年是第二年,前两年做技术研发,后两年做示范工程。”庞忠和说。

    开展深层含水层地下储热研究的意义在于,一方面为了补充中深层含水层的目的,实现中深层地热资源的可持续利用;另外一方面可以弥补能源供需在时间/空间分布的不平衡,能够综合利用多种可再生能源形式,将不稳定的能源如风能、太阳能转化为稳定连续的地热能,形成基于“地热+”的多能互补模式。

    我国深层含水层储热研究获新进展

    ——地下储能已从理论研究迈入技术研发阶段

    深层含水层储热技术具有储热容量大、储热效率高、造价低等优势,是一种较为理想的大规模跨季节储能方式。“与浅层含水层储能相比,深层含水层储能系统较为安全,具有空间大、环境温度比较高、保温性能比较好优势,同时可以利用原地的地热资源,原有的能量结合起来用,这个优势是显著的。”

    目前国外深层含水层储能工程应用比价少,主要集中在欧洲。庞忠和告诉记者,他曾参观欧洲的一些创新性国家如瑞士、德国,这些国家在开展深层含水层储热方面的研究工作。“瑞士在做一个500米左右的砂岩层的储热项目。德国有一个项目已经运行十余年了,目前这个项目运行的情况比较好。”

    关于我国深层含水层储能研究进展情况,庞忠和介绍,目前以中国科学院团队为主体承担的深层含水层地下储热技术研究已从理论模型研究进入到技术研发阶段。“目前这个项目的理论模型基本有了,现处于技术研发阶段,技术研发的着力点是提高其效率,保证储存顺畅运行。”庞忠和说。

    “目前中国科学院团队已做了一些初步的研究,这为前期的技术研发工作做了一些很好的铺垫。”他表示,现在可以开展实际的项目,针对当地的具体条件来做一套设计和相应的方案,通过不断的调试和优化,来提高其效率,这是该项目不断放大规模的一个尝试。

    不科学的开采地热田往往会导致地下水位下降外,还存在温度下降的问题。庞忠和解释说,这个是一个热平衡的问题,“你的开采量不能超过含水层热量的补充,那么在你开采量不大的时候能够掌握,比如雄县,我们持续观测了四五年,目前没有发现特别明显降温的现象,但是随着地热开采量的扩大和开采时间的延长,将来在雄安新区整个范围内地热需求量会不断的增加,到那个时候可能就会出现供应不上的问题,那么这时就需要对它进行能量补充,能量补充能够扩大其供暖的能力。”

    深层含水层储热市场应用前景广阔

    ——将不稳定的能源转化为稳定连续的地热能

    对于我国深层含水层储热发展潜力及市场应用前景庞忠和教授充满信心。“现在已有的储能系统都是短时间,几个小时或者一两天,而深层热储是可以跨季节的。”他举例说,在夏天可以把丰富热量储存下去,到了冬天再把热量开采出来利用。这是可以跨季节的进行热量的储存和利用。

    关于可再生能源多能互补应用,我国地热领域已做了探索尝试。庞忠和介绍,地热能与太阳能结合在西藏羊易电站得到了应用,“16兆瓦的地热电站旁边没多远就有两个各30兆瓦的太阳能光伏发电站。地热能和太阳能可以一起发力为电网做贡献,这是一种并联的多能互补的方式”。

    庞忠和介绍,除了地热能与太阳能结合外,还有一种多能互补方式——太阳能和风能的结合利用。太阳能、风能是非稳定的清洁能源,受气候的影响比较大,它们只能在阳光明媚或刮风的时候发电。如何解决这种能源利用不连续的问题,最好的出路就是找一个“仓库”把它储存起来,“多的时候我存起来,少的时候或者没有的时候我可以拿出来用,而地下储热就提供了这样的一个便利条件”。

    “等到地下储热这套技术做成之后,我们就可以接受其他不同能源所提供的能量,把它存储起来。”庞忠和透露,目前他们团队在张家口结合冬奥会正在做一个小规模的“地热能+风能”多能互补示范工程。他希望能有更多的合作伙伴来共同推动这一方面的技术应用示范,尽快地形成一套完备的技术,将来能够在更大的范围内使用。

    深层含水层储热技术既能结合其他多种能源形式实现多能互补,也可作为区域地热资源的必要补充和增强。庞忠和认为,“在未来清洁供暖需求日益增长、可再生能源占比越来越大的背景下,深层含水层储热系统作为一种有着良好研发基础的储热技术将发挥更大的作用。”

    (注:限于篇幅,本文有删减。原文刊载于2020年4月刊《地源热泵》杂志。本文图片由中国科学院地质与地球物理研究所黄永辉博士提供)

相关报告
  • 《亚热带北太平洋中层环流演化研究取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-03-21
    • 近日,国际地学权威刊物《Climate of the Past》在线发表了海洋试点国家实验室海洋地质过程与环境功能实验室邹建军副研究员(第一作者)和石学法研究员(通迅作者)与厦门大学、德国阿尔弗雷德韦格纳极地与海洋研究所、台湾海洋大学等单位合作的最新研究成果,“北太平洋亚热带西部千年尺度沉积物氧变化和它与北大西洋气候的联系(Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate)”。 该研究对在冲绳海槽北部获取得的高质量重力活塞沉积岩心CHS1(1998年利用“向阳红09”船取得)进行了高分辨率多指标分析,发现末次冰期以来亚热带北太平洋西部中层深度沉积物氧含量变化在千年尺度发生显著变化,呈现冷期增加,暖期减小的特征。这种变化模式与北太平洋中层水(NPIW)形成演化密切相关,本质上受北大西洋翻转环流驱动。这是石学法团队利用该岩心在西边界流黑潮演化研究之后的又一新进展。。 作为全球温盐环流的一个重要组成部分,NPIW广泛分布在亚热带北太平洋300-800m水深范围,其最显著的特征是低盐。现代观测显示NPIW低盐水主要源自鄂霍茨克海,在向南扩张时期把北太平洋亚极地区域丰富的营养盐输运到中、低纬海域,进而影响中低纬北太平洋内部生地化循环和表层-深层海洋物质交换。之前的研究重点关注北太平洋亚极地区域,而对亚热带区域中深层通风演化的研究程度较低。 研究人员对该岩心的海表生物生产力、海底氧化还原环境进行了恢复,结合不饱和烯酮表层海洋温度、黑潮指示种等高分辨率综合记录,与北太平洋高纬区域记录进行了对比,首次明确了在千年时间尺度上NPIW通风演化对亚热带北太平洋中层水团氧化还原条件的直接影响。在Heinrich冰阶1和2时段,亚热带北太平洋沉积物氧含量明显增加。在Bölling-Alleröd(B/A)间冰阶时段,沉积物氧含量显著减小。亚热带北太平洋沉积物氧含量变化模式与NPIW通风演化模式一致,表明二者之间存在紧密的联系。目前北太平洋最小含氧带主要出现在东太平洋,而在亚热带北太平洋西部并没有观测到缺氧现象。B/A时段沉积物缺氧现象的出现表明北太平洋最小含氧带广泛扩张,必然对北太平洋海洋生态系统和物质循环产生深远影响。这对于认识增暖背景下海洋脱氧过程的理解有着重要意义。 本研究成果得到了自然资源部全球变化与海气相互作用专项项目、国家自然科学基金等项目的联合资助。 相关论文及链接如下: https://www.clim-past.net/16/387/2020/ https://www.clim-past.net/10/1735/2014/
  • 《《Geology》: 两万年以来南海中上层水体热含量演变过程研究取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-05-28
    • 中国科学院南海海洋研究所边缘海与大洋地质重点实验室海洋沉积与古环境研究团队在南海中上层水体海洋热含量演变过程研究上取得重要进展,研究成果以题目“Is the upward release of intermediate ocean heat content a possible engine for low-latitude processes?”在线发表在国际期刊Geology上。杨艺萍博士为论文第一作者,向荣研究员为通讯作者。 海洋是地球上一个巨大的热量“存储器”。长期以来,关于全球气候变化的高纬驱动和低纬驱动假说一直存在许多争议。其中低纬驱动假说的关键是理解热带海区热量和水汽在海洋和大气中的分布和循环演化规律。中层水(200-1000米)作为大气和深海之间连通的必经通道,通过控制大气和深海之间的热量交换过程调节着全球气候的变化。然而由于研究手段的缺乏,冰期-间冰期之间的海洋热含量演变及中-上层水体的热量传输过程仍不清楚,这大大限制了我们对全球气候变化的理解。 研究人员利用生活在不同深度的浮游有孔虫为研究对象,根据有孔虫壳体的Mg/Ca比值记录,重建了两万年以来南海北部约60、100、250、325、700米的水体温度,并据此计算了表层、温跃层和中层水体的热含量演变历史。研究发现中层水的温度变化与表层水体的温度变化呈现相反的变化趋势,表明冰期有更多热量被储存在中层水体中。 随着末次冰期向全新世过渡,储存在中层水中的热量逐渐向上层释放,导致中层和温跃层的水体温度自下往上依次下降,即中层水温度在14.3千年(kyr)BP时就开始下降,而其上部的水层温度逐层延迟到12.9、9.2和7.3千年(kyr)BP时才出现下降。 研究认为,这种冰期时存储在中层水体中热含量延后向海洋表层释放的过程,可能为后来的全新世气候变暖提供了一个重要能量来源,有可能是热带低纬过程热含量演变的一个重要驱动因素。研究为低纬海区热含量变化提供了新的思路。 本项研究由国家自然科学基金项目“南海深海过程演变”重大计划重点项目(91228207)、国家自然科学基金青年基金项目(41906057)、中国科学院南海生态环境工程创新研究院自主部署项目(ISEE2018PY02)等项目共同资助完成。 论文链接:https://doi.org/10.1130/G47271.1