《我国海洋腐蚀每年损失7000亿 防护好可减1/3》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2018-04-24
  • 悄无声息的腐蚀,其破坏力比地震等自然灾害造成的损失更为严重。

      自2015年来,依托中国工程院重大咨询项目“我国腐蚀状况与控制战略研究”,包括近30位院士在内的200位科技工作者,针对基础设施、水环境等5大领域,开展了一次腐蚀成本和防护策略的调查研究。结果表明,2014年我国腐蚀总成本约为2.1万亿元,占当年国内生产总值(GDP)的3.34%。

      4·24“世界腐蚀日”到来前夕,项目首席科学家、从事海洋腐蚀与防护研究工作的侯保荣院士接受科技日报记者采访,“与其他腐蚀相比,海洋腐蚀尤为严重。”他指出,海洋腐蚀损失约占总腐蚀损失的1/3,达7000亿元。这也反映了我国现阶段海洋腐蚀成本现状。

      部分海洋工程构件几年即出现锈蚀

      潮起潮落,令人们陶醉流连的浪花飞溅、惊涛拍岸的壮美海景,在从事海洋腐蚀与防护研究的科研人员眼中,却是造成灾难的“海老虎”。

      由海洋腐蚀引发的灾难性事故,造成了极其巨大的损失。2010年,英国石油公司墨西哥湾“深水地平线”钻井平台海底阀门失效导致爆炸,导致美国海域最严重的环境灾难。

      除了安全问题,海洋腐蚀也带来了巨大的经济损失。

      侯保荣说,过去10年间,我国海港、桥梁、隧道以及海岸工程建设蓬勃发展。按照设计,重大海洋工程设施通常有数十年甚至上百年的服役寿命。然而,调查显示,我国部分设施结构件建成仅几年即出现锈蚀。

      “如何增强海洋工程设施的耐久性和安全性,降低重大灾害性事故发生率,延长设施使用寿命,是需要迫切解决的重要问题。”侯保荣说。

      海洋工程防腐关键问题亟待解决

      一块钢材在海洋中,飞沫能够喷洒到其表面,但在涨潮时又不能被海水浸没的区域叫“浪花飞溅区”。

      浪花飞溅区的腐蚀速率一般是全浸区的3到10倍,腐蚀最为严重。

      “十一五”期间,中国科学院海洋研究所开发了一套可带水操作的海洋钢结构浪花飞溅区新型复层矿脂包覆防腐技术,大大延长了设施的维修周期。

      但在侯保荣看来,目前还有大量海洋工程腐蚀防护的共性及关键性问题亟待解决。

      “有必要针对我国海洋工程设施腐蚀污损防护重大需求,开展海洋腐蚀与生物腐蚀机理及防护技术的开发研究。”

      海洋腐蚀虽然损失惊人,但并不是瞬间发生的,有针对性的措施能有效控制腐蚀问题。但项目参与者、中国科学院海洋研究所助理研究员路东柱告诉记者:“调研中发现,一些决策者、设计者、建造者仅考虑短期成本收益,致使一些设施投用不久便需进行大规模维护维修,给设施正常营运带来负面影响。”

      “如果防护措施到位,至少每年可以避免15%—35%的损失。”侯保荣说,与发达国家相比,我国腐蚀调查工作开展晚,他也希望通过此次调查,加强人们对腐蚀危害的认识,提高人们的防腐蚀意识。

  • 原文来源:;http://www.hellosea.net/news/focus/2018-04-24/49288.html
相关报告
  • 《重腐蚀防护技术为海洋工程穿上“国产外衣”》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-03-26
    • 在海洋工程重腐蚀防护领域获得授权专利65件、为港珠澳大桥桥墩打造耐腐蚀的“钢筋铁骨”……中国科学院金属研究所“海洋工程重腐蚀防护技术研究与应用”团队近日荣获2019年度中国科学院“科技促进发展奖”,其研发的高性能涂层和牺牲阳极联合防护技术等,在我国重大海洋工程基础建设耐久性工作中发挥了重要作用。 海洋工程的腐蚀防护是国际性难题。2018年10月,堪称桥梁界“珠穆朗玛峰”的世界最大跨海大桥——港珠澳大桥桥梁主体工程全面贯通。工程专家为港珠澳大桥设计了120年的使用寿命。 “港珠澳大桥的钢管复合桩位于海泥环境中,防腐涂层的破坏方式主要来源于打桩过程中的机械损伤、泥砂碎石磨划伤和泥下腐蚀因素造成的长期侵蚀、性能衰退等。”研究团队负责人李京研究员介绍说,为此,研究人员通过调整涂层配方,制备出高致密涂层,其抗渗透能力大大提升。再经过特殊喷涂工艺,将干粉状的涂料喷涂在金属桩表面,使其与金属的粘结强度大大增强,同时涂层的耐划伤性也有了显著提升。 此外,120年的耐久性设计要求仅仅依靠涂层防腐的防护手段是远远达不到的,必须与阴极保护技术联合使用。经反复研究,团队除完成了大桥基础钢管复合桩防护涂层工艺设计、阴极保护系统设计、原位腐蚀监测系统开发等工作,还研制出用于大桥桥墩的新一代高性能环氧涂层钢筋,为大桥桥墩打造了一副耐腐蚀的钢筋铁骨。 截至目前,该团队已经在海洋工程重腐蚀防护领域已获得授权专利65件,编制国家标准3项,企业/行业标准5项,相关成果受邀参展“伟大的变革——庆祝改革开放40周年大型展览”。
  • 《中国科学院海洋研究所在海洋腐蚀防护太阳能驱动的光电持续阴极保护研究中取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-06-05
    • 中国科学院海洋所海洋腐蚀与防护团队段继周研究组在光电持续阴极保护研究方面,创新性地构建了储能型能带可调且梯度搭建的WO3/ZnO/Zn-Bi2S3多相结光电极,提升了海洋环境中金属腐蚀防护的光电持续阴极保护性能,成果发表于国际工程技术类TOP期刊《Chemical Engineering Journal》(IF=16.744)。 近年来,太阳能技术已广泛应用于各个领域。海洋环境服役的海工金属构筑物长期饱受严苛腐蚀,腐蚀失效触目惊心,海洋腐蚀防护关系着重大海洋工程和装备的发展,尤其在远离陆地的海洋区域,传统保护方法存在着电力资源缺乏、维护成本高等问题。而海洋环境中丰富的太阳能资源为金属的腐蚀防护提供了新对策,因地制宜的取用太阳能,经由光电半导体材料的光电转换效应,原位为金属提供光生电子进行阴极保护,可同时解决海洋腐蚀与能源利用和环境保护等问题。光电阴极保护新技术将半导体光电效应拓展到海洋防腐中,光照激发光电材料产生的光生电子传输至金属进行阴极极化,具有“绿色”环保无损耗特色。面对当前能源不断枯竭、环境污染严重的困境,该光电化学薄膜新技术新材料的开发将利用清洁太阳能缓解海洋腐蚀难题,也可为高日照辐射的热带海域的腐蚀防护难题的解决提供新思路。 为解决在缺乏光照时,半导体光电材料无法抑制腐蚀电化学发生、腐蚀防护特性无法保持的瓶颈问题,研究人员成功构建了储能型WO3/ZnO/Zn-Bi2S3多相结光电极,使光电体系兼具储电子特性,提升了光照后的暗态下持续阴极保护性能,加强长效保护能力。3D纳米刺团簇状WO3/ZnO/Zn-Bi2S3多相结光阳极,仅暴露于100 s的模拟太阳光照射下,可存储5.27×10-2 C电子,并在闭光后为耦联金属提供5460 s的持续电流输出,分别是双相结WO3/ZnO和WO3/Zn-Bi2S3光电极的10.8和3.5倍,暗态持续阴极保护性能大幅提升。具有W6+/W5+可逆价态转变的WO3纳米刺团簇基底,兼具大的表面积和一维电子传输路径,可在光照下存储光生电子,并在闭光后有效释放电子。而在WO3和Zn-Bi2S3之间引入“载流子跳板”ZnO中间体后构建的三相异质结有助于建立匹配良好的能带梯度,加强光生电子/空穴背向迁移;通过掺杂Zn元素,将Bi2S3敏化剂的能带向负方向调节,提升光电阴极保护应用性能;Bi3+/Bi5+的可逆价态转变促进了光生空穴向外层的抽离消耗。最终,协同增强了WO3/ZnO/Zn-Bi2S3光阳极在光照及黑暗条件下的持续光电阴极保护性能。该设计为开发用于持续光电阴极保护的储能型复合光电极提供了借鉴,也可为光电容器、储能、暗态催化等其他光电化学应用领域中复合材料的设计拓展思路。 结合DFT第一性原理计算研究发现,Zn掺杂可精准调控Bi2S3能带结构,使其导带负移带隙变宽。导带负移增强光生电子还原能力,带隙的适度加宽有利于抑制材料内部光生载流子的复合。在WO3和Zn-Bi2S3之间引入ZnO,作为中间“载流子跳板”,打破了WO3/Zn-Bi2S3体系的Z构型,构建II型匹配的三相异质结具有更好的能带梯度匹配,增强了光生电子和空穴的分离及背向转移并减少了储电子的损耗,大幅提升了暗态阴极保护性能。 研究推测机理如下,在模拟太阳光照射下,由于界面异质结内电场作用和形成的导带梯度,激发到WO3、ZnO和Zn-Bi2S3的导带中的光生电子将逐步从Zn-Bi2S3迁移到WO3。一部分光生电子将被转移到耦联金属以进行阴极极化,另一部分将通过参与W6+/W5+的价态转换存储在WO3中。在暗状态下,储存在WO3中的光生电子将继续向金属迁移,以提供持续的阴极保护。相应地,光生空穴将向外层反向转移,迁移到Zn-Bi2S3表面的光生空穴将通过参与Bi3+/Bi5+的价态转变和其他氧化还原反应而被持续抽离消耗。Zn-Bi2S3组分除光电转换作用外兼具空穴消耗和转移辅助层的作用,提高了载流子转移效率。具有优异的光吸收、光生电子输出、低界面电阻、低表面功函数和良好的电子存储性能的WO3/ZnO/Zn-Bi2S3光电极,在海洋环境金属材料的光电阴极保护中显示出巨大的应用潜力,为构建更高效的阴极保护用储能型光电极提供了思路。 论文第一作者为中国科学院海洋所博士研究生杨玉莹,通讯作者为孙萌萌副研究员,研究得到了国家自然科学基金、山东省优青项目及中国科学院基础前沿科学研究计划从0到1原始创新项目等资助。 文章信息: Yang Yuying, Sun Mengmeng, Chen Zhuoyuan, Xu Hengyue, Wang Xiaohui, Duan Jizhou, Hou Baorong. 3D nanothorn cluster-like Zn-Bi2S3 sensitized WO3/ZnO multijunction with electron-storage characteristic and adjustable energy band for improving sustained photoinduced cathodic protection application. Chemical Engineering Journal, 2023 (458): 141458. https://doi.org/10.1016/j.cej.2023.141458