《决定代谢健康的复杂三元因素:饮食、宿主和微生物组的相互作用》

  • 来源专题:食物与营养
  • 编译者: 李晓妍
  • 发布时间:2022-10-28
  • 饮食策略有助于各种疾病的预防、发展和进展。在这种背景下,人们对传统地中海饮食的健康益处给予了极大的关注,这种饮食模式富含不饱和脂肪和纤维,包括大量的新鲜水果、蔬菜、豆类和橄榄油的摄入。可靠的流行病学数据支持,坚持地中海饮食与总体死亡率以及肥胖、代谢性和炎症性疾病的发展,甚至癌症之间存在着负相关关系(2-4)。有趣的是,所有这些病理都与肠道屏障功能受损、生物失调和内毒素血症相关(4)。因此,人们对饮食模式、微生物组成和肠道稳态之间的复杂相互作用越来越感兴趣。其中,短链脂肪酸(SCFAs)被认为是地中海饮食有益效果的中介。这些短羧酸是由共生细菌厌氧发酵膳食纤维产生的,具有屏障保护和免疫调节的特性。
  • 原文来源:https://academic.oup.com/ajcn/article/116/4/848/6687827?rss=1
相关报告
  • 《科学家发现肠道微生物组对饮食健康的影响》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-01
    • 人体微生物群落是一个复杂的微生物生态系统,其组成对人的终身健康起着至关重要的作用。然而,人们对健康状况与肠道微生物群之间的具体分子机制知之甚少。 为了研究饮食、微生物组和这些微生物产生的一组小分子化学物质("代谢组")之间的相互作用,Jane Ferguson博士及其同事分析了136名健康受试者的饮食,并对他们的微生物组和代谢组进行了分析。 他们的数据表明,肠道微生物组的组成影响饮食的代谢,这些微生物通过调节特定的代谢产物及其下游信号通路,可能影响宿主的健康。例如,摄入植物性营养物质和人工甜味剂与循环代谢产物的差异有关,特别是胆汁酸,而这取决于微生物组的组成。 该小组发表在《Frontiers in Genetics》杂志上的研究结果表明,肠道微生物组的组成可以调节膳食营养物质的代谢方式,从而对代谢健康产生潜在的下游影响。
  • 《Science | 综述宿主调控微生物组》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-07-22
    • 2024年7月19日,牛津大学Kevin R. Foster通讯在Science发表题为Host control of the microbiome: Mechanisms, evolution, and disease的文章,讨论了宿主调控其微生物群的机制。 多细胞生物与其相关微生物群之间的复杂关系长期以来一直被认为是维持健康的关键因素。微生物组由微生物群和宿主因子组成,在宿主生理的各个方面如免疫、营养和认知功能发挥着关键作用。以慢性竞争和快速进化为特征的微生物群的动态性质对宿主构成了重大挑战。为了应对这些挑战,宿主已经进化出一套控制机制,使他们能够塑造和操纵自己的微生物群,以最大限度地提高效益,同时最大限度地减少危害。 宿主控制特征包括影响微生物群的各种机制。这些包括免疫、屏障功能、生理稳态、转运和宿主行为。免疫,特别是脊椎动物的免疫系统,是已知的最复杂的宿主控制机制。它涉及天然免疫和适应性免疫,其中适应性免疫使宿主能够产生新的受体来识别和应对特定的微生物株。植物和动物共有的天然免疫利用模式识别受体来检测常见的微生物特征,从而驱动重塑微生物组并维持正常宿主-微生物组关系的反应。适应性免疫仅在有颌脊椎动物中发现,能学习并改变激活其受体的化学配体,从而对特定的微生物威胁做出量身定制的反应。 屏障功能是主机控制的另一个关键方面。屏障限制了微生物的定植和生长,有些屏障,如哺乳动物皮肤,完全阻断了通道,而另一些屏障,如粘膜上皮,则起到了选择性屏障的作用,限制了转运,但允许化学交换。粘液(mucus)是动物的特征,是容纳微生物群并实现气体交换的保护层。粘液还充当微生物的食物来源和附着位点,宿主可以利用它来塑造微生物群的组成。生理稳态在宿主控制中起着重要作用。宿主可以定义共生菌可以栖息的生态位,不同部位选择不同的微生物群。氧气控制在某些微生物组中尤为重要,促进了共生菌对复杂碳水化合物和其他底物的发酵。总肠道形态的进化也在生理控制中发挥作用,食草动物进化出了复杂的厌氧肠道,使植物材料能够发酵。 迁移(transit),即对微生物组的运动,是另一种宿主控制机制。平滑肌能够实现强有力的、有规律的蠕动收缩,这可以迅速清除导致疾病的共生菌。宿主行为也会影响微生物组。避免变质的食物可以降低摄入病原体的可能性,而对某些口味的偏好可以帮助宿主摄入有益的共生菌。此外,亲属之间特殊共生体的垂直传播也有助于稳定微生物群。 宿主控制机制以多种方式影响微生物组,可以改变存在的共生菌(partner choice,“伴侣选择”)或改变存在的寄生体的表型(partner manipulation ,“伴侣操纵”)。宿主可以通过调节宿主发育过程中的微生物组组装过程来影响共生菌的迁移,还可以通过限制问题共生菌的资源或为有益共生菌提供资源来影响已建立微生物的丰度。宿主可以直接影响驻留共生菌的行为,以增加它们从中获得的益处。最后,宿主可以塑造共生菌之间的相互作用,促进竞争,从而选择为宿主提供益处的生长旺盛的细菌。 共生进化和对抗适应(counteradaptation)对宿主来说是一把双刃剑。如果微生物的快速进化能够为微生物组内的有益性状产生自然选择,那么它就可以成为宿主控制的机会。然而,如果共生体进化使共生体能够逃避宿主的控制,也可能是一个问题。宿主控制机制通常针对微生物表型而不是基因型来限制反进化(counterevolution)。尽管如此,一些共生菌进化出了绕过宿主控制机制的方法,为宿主控制在共生菌进化中的作用提供了令人信服的证据。 疫苗接种提供了一种针对肠道微生物组中特定细菌的潜在策略。通过恢复肠道中的厌氧环境或调节关键营养素来增强宿主对共生体代谢的控制也可能是有益的。特别是随着年龄的增长,我们的微生物组变得更加多变和容易患病,促进健康粘液层和宿主上皮屏障完整性的策略具有明显的潜在健康益处。 总之,宿主控制机制是由自然选择形成的,以应对微生物组固有的(注意是inherent不是innate或inborn)多样性和可变性。了解这些机制对于理解微生物组和操纵它们以改善健康至关重要。