《Nature | 抗病毒药物莫诺拉韦或导致新冠病毒发生新突变》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-10-01
  • 2023年9月25日,剑桥大学、弗朗西斯·克里克研究所、利物浦大学、帝国理工学院等机构的研究人员合作在 Nature上发表了题为A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes 的研究论文。这项新研究显示Molnupiravir(莫努匹韦)可能诱导了新冠病毒的一种特异性突变谱。

    研究结果显示新冠病毒出现了一种与使用Molnupiravir相呼应的突变特征。目前尚不清楚这些突变是否会影响对Molnupiravir的耐受,但提示了我们Molnupiravir的广泛使用可能正在推动新的新冠突变株的出现。



    本文内容转载自“生物世界”微信公众号。

    原文链接: https://mp.weixin.qq.com/s/DMjMjzwuDlI0jbHNMr-EWA


相关报告
  • 《上科大等联合攻关团队科研成果荣登Nature——解析新冠病毒主蛋白酶三维结构,发现潜在药物》

    • 来源专题:科技大数据监测服务平台
    • 编译者:zhoujie
    • 发布时间:2020-04-10
    • 北京时间4月9日下午5点,经国际权威学术刊物Nature邀请投稿,上海科技大学饶子和/杨海涛团队与合作者组成的“抗新冠病毒攻关联盟”在该期刊上联合发表了新冠病毒的重要研究成果“Structure of Mpro from COVID-19 virus and discovery of its inhibitors”,率先在国际上成功解析新型冠状病毒关键药物靶点——主蛋白酶(Mpro)的高分辨率三维空间结构,并综合利用三种不同的药物发现策略,找到针对新冠病毒的潜在药物。 这也是今年以来上科大在国际顶尖学术期刊发布的第三篇重大科研成果。今年1月31日,我校iHuman研究所执行所长刘志杰研究团队在人源大麻素受体结构与功能的最新研究成果,在Cell上在线发表;2月20日,iHuman研究所徐菲课题组与合作组解析首个孤儿受体三维结构的科研成果,在Nature上在线发表。 截至4月8日,全球累计确诊新冠肺炎约150万人,死亡人数超过8.7万人,已覆盖全球200多个国家和地区。新型冠状病毒与严重急性呼吸道综合征冠状病毒(SARS-CoV)和中东呼吸综合征冠状病毒(MERS-CoV)具有较近的亲缘关系,因缺乏特效药和疫苗,针对新型冠状病毒的药物靶点科研攻关及新药研发迫在眉睫。 新型冠状病毒非常“狡猾”,在入侵细胞后,会立即利用细胞内的物质合成自身复制必需的两条超长复制酶多肽(pp1a和pp1ab)。这两条复制酶多肽需要被剪切成多个零件(如RNA依赖的RNA聚合酶、解旋酶等等);这些零件进一步组装成一台庞大的复制转录机器,然后病毒才能启动自身遗传物质的大量复制。两条复制酶多肽的剪切要求异常精确,因此病毒自身编码了一把神奇的“魔剪”——主蛋白酶(Mpro)。这把“魔剪”在复制酶多肽上存在至少11个切割位点,只有当这些位点被正常切割后,这些病毒复制相关的“零件”才能顺利组装成复制转录机器,启动病毒的复制。由于主蛋白酶这把“魔剪”在病毒复制过程中起到至关重要的作用,且人体中并无类似的蛋白质,因此主蛋白酶就成为一个抗新冠病毒的关键药靶。 其实在过去30年间至少出现了30种新发传染病(如SARS、 MERS等),如何能在疫情期间迅速找到具有临床潜力的药物仍然是一个重大挑战。为解决这一难题,攻关“联盟”首先瞄准了“老药”,即成药、临床试验药物以及天然产物;其次攻关“联盟”同时开展了从头设计、计算机虚拟筛选和高通量筛选三种不同的研究策略,三管齐下。 在从头设计的研究策略中,攻关“联盟”发现迈克尔受体N3是一个主蛋白酶的强效抑制剂,并率先解析了2.1Å的“主蛋白酶-N3”的高分辨率复合物结构(随后又提高至1.7Å),这也是世界上第一个被解析的新冠病毒蛋白质的三维空间结构。为方便相关的科技工作者第一时间开发以该酶为靶点的抗病毒药物,攻关“联盟”第一时间公开了研究成果,并在PDB蛋白质结构数据库(Protein Data Bank, PDB)公开了结构坐标。自1月26日起,团队已为国内外300多家高校、研究机构及企业的实验室直接提供了数据。该结构被PDB蛋白质结构数据库选为2020年2月的明星分子(February Molecule of the Month),并被PDB撰文报道。 此后,攻关“联盟”继续联合利用虚拟筛选和高通量筛选策略相结合的方式,对10000多个老药、临床药物以及天然活性产物进行筛选,发现了数种对主蛋白酶有显著抑制作用的先导药物,其中包括双硫仑(disulfiram)、卡莫氟(carmofur)、依布硒(ebselen)、紫草素(shikonin)、Tideglusib和PX-12等。后续的抗新冠病毒实验显示,依布硒和N3均能在细胞水平显著抑制新冠病毒的复制。值得一提的是,依布硒已用于治疗听力障碍等多种疾病的临床试验(完成临床二期),并具有很好的安全性表现。上述研究成果,为迅速开发具有临床潜力的抗新冠肺炎的药物奠定了重要基础。 上海科技大学、清华大学联合培养博士研究生靳振明、杜小宇为论文并列第一作者,上海药物所许叶春研究员、军事科学院军事医学研究院邓永强副研究员、武汉病毒所博士研究生刘美琴为论文的并列第一作者,上海药物所研究员兼上海科技大学免疫化学研究所特聘教授蒋华良院士、清华大学教授兼上海科技大学免疫化学研究所特聘教授饶子和院士、上海科技大学免疫化学研究所课题组长杨海涛研究员(兼生命科学与技术学院副教授)为共同通讯作者。上海科技大学为第一完成单位。“抗新冠病毒攻关联盟”由上海科技大学-清华大学饶子和/杨海涛团队、中国科学院上海药物所蒋华良团队、军事科学院军事医学研究院秦成峰团队以及中国科学院武汉病毒所石正丽团队、肖庚富团队等组成。国家蛋白质科学中心(上海)主任兼上海科技大学生命科学与技术学院教授许文青、澳大利亚昆士兰大学的Luke W. Guddat教授参与了此项研究。 攻关“联盟”中的饶子和院士研究团队自从2003年SARS暴发以来,在17年间一直致力于冠状病毒关键药靶的研究及抗病毒新药的研发。研究团队在SARS暴发期间,就曾在世界上解析了首个SARS病毒蛋白质(主要蛋白酶)的三维空间结构,为抗SARS药物的研发提供了关键结构依据;随后研究团队又设计和开发出首个抑制所有冠状病毒的广谱抑制剂。这些前期的研究都为本研究的顺利开展奠定了基础。 文章链接:https://www.nature.com/articles/s41586-020-2223-y
  • 《可逆交换可放大COVID-19抗病毒药物候选物的信号》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-09-01
    • 纳米医学于2020年8月31日发表关于“可逆交换可放大COVID-19抗病毒药物候选物的信号”,文章指出已经提出了几种候选药物,并测试了它们作为冠状病毒性肺炎(COVID-19)的最新临床治疗方法。氯喹,羟氯喹,利托那韦/洛匹那韦和法维拉韦正在治疗该疾病的试验中。超极化技术具有进一步提供这些药物在分子水平和在核磁共振/磁共振成像领域中不同应用中的作用的更好理解的能力。该技术可能为COVID-19的诊断和研究提供新的机会。通过基于可逆交换的超极化研究对大型候选药物进行信号放大。由于对氢的前所未有的长距离极化转移,我们观察到了来自整个结构的超极化质子信号。我们还发现,最大极化转移产率的最佳磁场取决于分子结构。我们可以期待对其他重要大分子的超极化,同位素标记以及在具有长自旋弛豫时间的核上进行极化转移的进一步研究。这些特征在药物分子上的临床观点可以拓宽超极化技术在治疗研究中的应用。