《Tectonophysics文章:中东地区地壳内地震波衰减及其对土耳其-伊朗-西藏高原碰撞造山带的构造动力学意义》

  • 来源专题:青藏高原所信息监测服务
  • 编译者: 王婷
  • 发布时间:2016-03-28
  • 欧亚板块、非洲板块、阿拉伯板块和印度板块持续汇聚,形成土耳其-伊朗-青藏高原一线的大陆碰撞造山带。大陆碰撞的构造格局受控于三叠纪中期的古特提斯洋消亡、新特提斯洋闭合,以及后续的构造过程。区别于古老大陆和稳定的地台地区,造山过程通常伴随着剧烈的热运动,强烈影响着地壳和上地幔介质的属性和地质块体的流变学性质,并由此产生诸如材料流动,破碎,弹性模量改变,局部熔融等现象。地震波衰减的主要机制包括固有衰减和散射衰减两部分。前者与热激活过程直接相关,后者与介质的非均匀性,例如破碎以及局部熔融包体等的存在以及它们的尺度存在密切关系。因此,利用主要在地壳内传播的地震Lg波能够探测地壳内物质的温度、压力和含水等物理状态。

    中国科学院地质地球所地球深部结构与过程研究室赵连锋副研究员与美国加州大学圣克鲁兹分校谢小碧研究员合作,利用宽频带地震资料,对Lg波在土耳其-伊朗高原地壳中的衰减进行研究,建立了该区域宽频带高分辨的衰减模型(图1)。他们比较了造山带内部及周边地区地壳内的衰减、上地幔顶部Pn波速度分布以及地震震源机制解的对应关系(图2),探讨了该衰减模型对土耳其-伊朗高原形成的地球动力学意义(图3)。研究亮点包括:(1)利用地震衰减模型约束了土耳其-伊朗高原壳内高温异常的分布形态;(2)通过统计学方法建立了衰减与区域构造之间的联系,揭示了在土耳其-伊朗高原存在较厚的地壳和较强的衰减,但区别于青藏高原的巨厚地壳和强烈衰减,也不同于中国东北和华北地壳;(3)土耳其-伊朗高原地壳中地震波的高衰减区分布与上地幔顶部Pn波低速区分布存在较强的相关关系,揭示出二者可能具有共同的热成因机制。

    以上研究成果近期发表于国际知名地学期刊Tectonophysics (Zhao et al. Strong Lg-wave attenuation in the Middle East continental collision orogenic belt. Tectonophysics, 2016, 674: 135-146)。

    原文链接

相关报告
  • 《研究揭示莫克兰俯冲带异常地壳结构及其地震构造意义》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2024-09-13
    • 近期,中国科学院南海海洋研究所边缘海与大洋地质重点实验室徐敏研究员团队和林间院士团队,联合香港中文大学教授杨宏峰以及中山大学工程师曾信等,在北印度洋莫克兰俯冲带的地壳结构及其地震构造意义的研究上取得了重要进展。相关研究成果发表于国际知名地学期刊《地球与行星科学通讯》(Earth and Planetary Science Letters)。于传海助理研究员为第一作者,徐敏研究员和林间院士为通讯作者。 北印度洋莫克兰俯冲带是全球超低角度俯冲、巨厚沉积覆盖、超宽增生楔的俯冲带端元代表,其巴基斯坦海域区段构造特征复杂、大震活动频繁,且毗邻“中巴经济走廊”终点站—瓜达尔港,对“21世纪海上丝绸之路”的建设具有重要意义。然而,由于该地区海上探测数据有限,其巨厚沉积物的压实固结状态、俯冲板片形态和壳幔结构一直未得到清晰解答。鉴于其厚达数千米的沉积物输入和低角度俯冲特性,该区域被认为容易发生大型逆冲地震。 2018年,林间院士领导实施的中国-巴基斯坦首次北印度洋联合考察航次,采集了包括海底地震仪(OBS)、重力测量、多道地震、多波束地形等一系列丰富数据。基于此次巴基斯坦近海进行的主动源OBS实验,研究团队获得了莫克兰俯冲板片的高分辨率地壳速度模型,并结合重力数据等进一步揭示了测线的密度和孔隙度结构特征。 研究结果表明,俯冲板片沉积层厚度可达8.5千米,在4-5千米深度处沉积物孔隙度梯度发生明显变化,这表明了压实和固结的关键深度。火成岩地壳厚度约6-12千米,俯冲倾角约为2°,小默里脊两侧地壳展现出不同的构造来源或经历了不同的构造演化过程,可能代表古洋-洋边界的残留,并伴随着低密度底侵作用。此外,研究发现莫克兰俯冲带的非典型地壳结构可能与岩浆活动和俯冲板块水合作用有关。俯冲的沉积物已充分压实固结,而俯冲的上地壳具有高含水量,这些特征可能显著影响莫克兰俯冲带的地震破裂机制。 这项成果揭示了莫克兰俯冲带的沉积固结状态、板片地壳结构框架和地震发育特征,有助于更深入理解莫克兰区域的地质构造格局,并为进一步评估其地震海啸风险提供了重要参考。对于“一带一路”倡议、“中巴经济走廊”项目的海洋灾害预防和全球低角度俯冲带地震机理研究方面具有重要的科学价值和实际意义。 本研究得到了国家自然科学基金项目、广东省基础与应用基础研究基金项目和中国科学院基金项目等共同资助完成。 文章信息:Yu,C.,Xu,M.,Lin,J.,Yang,H.,Zhao,X.,Zeng,X.,He,E.,Zhang,F.,Sun,Z. (2024). Atypical crustal structure of the Makran subduction zone and seismotectonic implications. Earth and Planetary Science Letters. 643: 118896. 原文链接:https://www.sciencedirect.com/science/article/pii/S0012821X24003297
  • 《2023年土耳其双重地震不同破裂过程研究取得重要进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2024-10-28
    • 近日,中国科学院边缘海与大洋地质重点实验室王志研究员及其合作者,在2023年土耳其双重地震的研究上取得了重要进展。相关研究成果发表在《Science China Earth Sciences》/《中国科学地球科学》期刊上,研究员王志为论文第一作者和通讯作者,中国科学院青藏高原研究所研究员裴顺平和博士伏毅为论文共同作者 尽管大地测量和地震学观测已经揭示了土耳其双重地震破裂的初步过程和扩展模式,但东安纳托利亚断裂带深部结构变化在地震破裂过程中的作用仍然不甚明了。为了深入理解这一点,研究团队通过分析大量高质量的P波和S波走时数据,运用地震双差重定位和非线性多参数联合反演方法,得到了双重地震破裂带的高分辨率纵横波速度和泊松比结构。 研究发现两次地震具有不同的诱发机制,这些机制与断裂带的显著地震结构属性变化和板块构造过程紧密相关。7.8级的第一次地震发生在死海断裂带北端,这里的岩石强度从强渐变为弱,形成了一个刚性过渡区。而7.6级的第二次地震则起始于地震孕震层的塑性带,这一区域以低地震波速度和高流体饱和度为特征,并且沿着?ardak断层延伸。 研究认为,7.8级地震破裂带的显著地震结构差异主要是由于东安纳托利亚板块的弱化部分与阿拉伯板块的脆性部分之间发生了强烈的倾斜碰撞。而7.6级地震破裂带则是由于塞浦路斯板块向北俯冲和随后的拆沉引起的流体侵入,这增加了震源区的流体压力,导致了塑性变形。 此外,第一次地震的发生有助于减少第二次地震断层上的剪切应力,可能会延缓第二次地震的破裂。但是,由于两个大走滑断层交汇形成的三角区域内存在双左旋走滑结构,第一次地震显著降低了东安纳托利亚板块对第二次地震断层的正应力作用,这不仅降低了断层面的有效摩擦力和增加了断层内岩石的孔隙度,还导致了应变力的下降和库仑应力的重新分布,从而有助于第二次地震的发生。这一发现很好地解释了为什么第二次地震在第一次地震之后大约9个小时才发生,即流体从深部和周边区域渗入震源区需要足够的时间来积累诱发断层失衡所需的应力。 这项研究所提出的双重地震破裂模式与控制单个地震破裂的模型不同,它为减轻土耳其或欧洲潜在的地震灾害提供了重要的信息。同时,从这次地震事件中得到的经验教训也有助于重新评估中国南北地震带或全球其他具有类似地质构造地区发生灾难性地震的风险。 该项工作得到了国家自然科学基金项目和中国科学院项目的联合资助。 论文信息:Zhi Wang*, Yi Fu, Shunting Pei. Relationship between seismic structures and the diverse rupture processes of the 2023 Türkiye earthquake doublet. Science China Earth Sciences 67(9), 2810–2823, 2024. 论文链接:https://link.springer.com/article/10.1007/s11430-023-1324-y