《微生物所在IL-1β介导炎症的调控机制中取得进展》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-04-01
  • 炎症是机体对病原微生物、有害刺激物或物理伤害所产生的防御反应。适度的炎症有利于清除病原微生物和修复受损组织,但过度的炎症会导致进一步的组织受损甚至危害生命。炎症一般可分为炎症激活、炎症消退以及组织修复、稳态重构三个阶段,细胞因子、趋化因子等炎性介质在炎症的不同阶段发挥着不同的作用。IL-1β是典型的促炎细胞因子,其表达受到双信号的严格控制。起始信号可以诱导无生物活性pro-IL-1β的表达,激活信号则能够激活炎症小体,随后成熟的Caspase-1将 pro-IL-1β切割成有生物活性的IL-1β并分泌到细胞外发挥作用。

      Cyclophilin A(CypA)是一种在各种组织中广泛存在的肽基脯氨酰顺反异构酶。该团队十多年来对CypA进行了系统性的研究,发现CypA参与流感病毒复制、抗病毒天然免疫及流感病毒继发的细菌共感染(Cellular Microbiology, 2009;Cell Reports, 2021)。而且,CypA能够通过调控RIG-I/MAVS/NF-κB(eLife,2017)信号通路和IL-6反式信号通路(FESAB J,2021)促进IL-1β等炎症因子的表达,但CypA在炎症的不同阶段发挥怎样的作用仍然未知。此次研究就CypA在炎症激活、炎症消退以及组织修复过程中的作用及其作用机制进行了深入探讨。

      该研究利用野生型和CypA敲除小鼠构建了LPS诱导急性肺炎的模型,分析CypA在炎症不同阶段的作用。结果显示,CypA在炎症早期能够促进炎症,而在炎症后期却发挥了抑制炎症的作用,这与CypA调控的IL-1β的产生密切相关。在炎症激活阶段,CypA增强Smurf1介导的pro-IL-1β的K63连接泛素化,进而有利于IL-1β的成熟。而在炎症消退阶段,CypA增强Smurf1介导的pro-IL-1β的K48连接泛素化及蛋白酶体途径降解。成熟的IL-1β与其受体结合后激活NF-κB、c-Jun等转录因子,触发炎症级联反应。研究人员进一步构建了IL-1β诱导急性肺炎的小鼠模型,发现CypA能够增强IL-1β、IL-6、TNF-α等细胞因子的表达,加重肺组织损伤。同时,CypA抑制Cyld介导的ILK去K63连接泛素化,从而正调控IL-1β/ILK/AKT信号通路,促进肺上皮细胞间质化介导的肺纤维化修复。综上,CypA通过增强IL-1β的表达和成熟促进炎症的激活和肺损伤,随后通过增强IL-1β的降解和IL-1β诱导的上皮细胞间质化促进炎症的消退和肺组织修复。

    该研究揭示了CypA在炎症不同阶段对IL-1β介导炎症的调控机制,有助于深入理解炎症反应的复杂且精细的调控过程,并为抗炎症药物研究及IL-1β相关的炎症和肿瘤等疾病的治疗提供了重要理论支撑。

      以上研究发表在Cell Reports期刊上,题为“Delicate regulation of IL-1β-mediated inflammation by cyclophilin A”。中国科学院微生物研究所杨文贤博士为论文第一作者,孙蕾项目研究员、刘文军研究员为论文共同通讯作者。该研究得到中国科学院战略性先导科技专项(B类)、国家自然科学基金委等资助。

      文章链接:https://www.cell.com/cell-reports/fulltext/S2211-1247(22)00249-2

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/202204/t20220401_6418030.html
相关报告
  • 《微生物生理代谢研究组在微生物调控元件资源应用中取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-04-06
    • 微生物无处不在,为了适应环境,微生物进化出了感知各种环境因子的遗传元件。其中,別构转录因子(allosteric transcription factor,aTF)集小分子效应物结合结构域与DNA结合结构域于一身,能够通过结合效应物触发别构效应进而精准地调控靶基因的转录,已经在合成生物学遗传电路开发中得到广泛应用。微生物生理代谢研究组基于多年来对原核生物aTF的认识,利用aTF特有的识别小分子的潜力,首次将其在体外作为全新的识别元件开发小分子检测方法,相关文章已于2017年发表于Chem Commun1并被遴选为back-cover。 近日,为了更好的利用aTF资源开发更便捷、廉价的小分子检测方法,微生物生理代谢研究组首次将aTF识别的小分子信号与等温链替换扩增反应(strand displacement amplification, SDA)实现偶联。从而将在核酸检测领域中广泛使用的SDA扩增方法拓展到小分子检测领域。该策略原理如图:使用Klenow聚合酶(Klenow fragment,KF)与aTF竞争结合引物末端,当不存在靶标小分子时,aTF的结合在空间上位阻了KF介导的SDA;当存在靶标小分子时,小分子使aTF从引物末端解离,从而KF得以启动多轮SDA反应,将小分子信号转换为扩增的G-四链体DNA信号。G-四链体既可以与荧光染料ThT结合,输出荧光信号;也可以与Heme形成DNAzyme,在H2O2介导下氧化ABTS2-,输出可视化颜色变化信号。利用以上策略,微生物生理代谢研究组成功实现了环境污染物对羟基苯甲酸和临床标志物尿酸的检测方法开发。相关文章于近日再次发表在Chem Commun2,并再次被遴选为back-cover。同时也申请了相关专利。
  • 《微生物所在真菌间交流激活新颖小分子的机制研究取得重要进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-05-10
    • 真菌的生存环境非常复杂,在自然界,真菌与细菌、植物、动物乃至人类的共存普遍存在。丰富的物种多样性以及生存环境的多变致使真菌进化出一套独特的机制去应答环境并与环境中的生物进行交流。这种交流和对自然界的应答促使真菌产生结构新颖、复杂、类型多样化的活性次级代谢产物,为新药发现提供丰富资源。然而,真菌是如何与环境中微生物进行交流,分子机制和生化机理是什么? 中国科学院微生物研究所尹文兵研究组一直致力于真菌次级代谢产物的基因调控机制及功能研究。近期,该研究组在研究模式真菌构巢曲霉(Aspergillus nidulans)和其他真菌互作中,筛选出一株内生真菌石斛附球菌(Epicoccum dendrobii),引起构巢曲霉次级代谢谱的全局变化(图1)。他们在进一步研究中发现,在共培养过程中,石斛附球菌可引发至少4个属的真菌次级代谢产物发生显著变化(图1),表明该菌作为供体菌具有普适性机制去刺激受体菌,同时受体菌通过调控次级代谢的变化作为响应,进而导致一些新的次级代谢产物产生(图1)。 然而,这种响应是如何实现的呢?以构巢曲霉和石斛附球菌的共培养体系为模式,尹文兵研究组从生物、化学及遗传学等方面对其响应的机制进行了解析。转录组学和代谢组学分析表明,构巢曲霉中有15.4%的基因被显著上调,19%被显著下调,22个次级代谢产物产量显著提高,并鉴定出8个聚酮类化合物新结构Aspernidines(图1)。转录组数据分析结合基因敲除和回补实验,证明了构巢曲霉中响应刺激的关键调控元件是全局性调控因子VeA的等位蛋白——VeA1蛋白(缺失了VeA的前36个氨基酸),并且与Velvet复合体中的LaeA和VelB协同参与调控(图2)。他们进一步研究发现,下游转录因子SclB受VeA1蛋白的调控,参与了Aspernidines等多个生物合成基因簇的调控激活,揭示出一个复杂的基因调控网络(图2)。同时,这一调控网络也在烟曲霉中得到了验证。 该研究首次提出了部分功能缺失的VeA1蛋白的代谢调控功能,揭示了真菌间共培养时由VeA1介导,通过LaeA-VeA1-VelB复合体,再经由下游转录因子SclB的复杂响应调控网络(图2),为真菌-真菌共培养调控机制的研究提供了坚实的理论依据,是对自然界中真菌与多物种共存状态下的应答与交流机制的初步探索,与此同时,也为新型天然产物的开发提供了有效的策略。 上述研究成果以研究长文(Article)形式快速发表在国际期刊Science Advances(https://www.science.org/doi/10.1126/sciadv.abo6094),题为“Fungal-fungal cocultivation leads to widespread secondary metabolite alteration requiring the partial loss-of-function VeA1 protein”。中国科学院微生物研究所尹文兵研究组王刚博士和特别研究助理冉火苗博士为共同第一作者,尹文兵研究员为通讯作者。该研究获得国家重点研发计划、国家自然科学基金项目、中国科学院基础前沿科学研究计划从0到1原始创新项目、中国科学院战略生物资源计划以及博士后科学基金的资助。