几十年来,月球微妙的引力带来了一个棘手的挑战,那就是原子钟的运转在月球表面的时候要比在地球上每天快约56微秒。这种极其微小的差异看起来似乎并不起眼,但它可能会干扰类似航天器着陆和与地球通信等重要活动所需的精确计时。
近日,美国国家标准与技术研究院(NIST)的研究人员已经制定了一套在月球上精确计时的计划,为以后用于月球探测的类似GPS导航系统建设指明了方向。该研究发表在《The Astronomical Journal》期刊上,重点是定义创建月球坐标时间系统所需的理论框架和数学模型。
这项创新对于美国宇航局雄心勃勃的阿尔忒弥斯计划至关重要,该计划的目标是在月球上建立常态化的驻留机制,并可能成为探索宇宙的重要垫脚石。
月球坐标时间
地球上的GPS非常依赖于精确的计时。GPS 星座中的每颗卫星都携带与公共时间基准同步的原子钟。通过测量来自多颗卫星的信号到达接收器所需要的时间,GPS 就可以确定接收器的位置和时间。然而,由于相对论中提到的引力效应,在月球上实施类似的系统,并将其准确地与地球上的系统相关联,就变成了一项独特的挑战。
爱因斯坦的相对论指出,引力会影响时间的流逝。对于每个人来说,时间不会均匀地流逝。例如,在月球上,由于重力比地球上弱,时钟的滴答声会稍微快一些。此外,由于包括月球绕地球的轨道和地球绕太阳的轨道在内的多种引力效应的叠加,使地球上的观察者与月球上的观察者测量时间的方式略有不同。这些效应会随着时间的推移对导航和通信的精确性产生显著的影响。
为了解决这个问题,NIST的研究人员创建了一个系统,以建立并实施考虑到月球独特引力环境的月球时间。这个系统建立了一个新的主“月球时间”,作为整个月球表面的计时参考,类似于地球上协调世界时(UTC)的功能。
“这就像是让整个月球同步到一个针对月球重力调整的‘时区’,而不是让时钟逐渐与地球的时间失去同步。”NIST物理学家Bijunath Patla表示。
“这项工作为采用类似于GPS的导航和计时系统奠定了基础,该系统将为近地和地球用户提供月球探测服务。”NIST物理学家Neil Ashby表示。
新的提案将是开发“月球定位系统”的第一步,该系统将包括在月球表面和月球轨道上特定位置的高精度时钟网络。这些在月球轨道上的精确原子钟将充当月球GPS网络的“卫星”,为导航提供准确的授时信号。
精确的月球导航和定位可以实现更准确的着陆和更高效的月球资源探索。如果没有这个“月球GPS”,如果没有这个“月球GPS”,在月球上着陆和操作就会像在没有任何定位系统的情况下试图在地球上导航一样——你只能对自己的位置有一个粗略的判断,这使得想要准确的执行复杂操作或进行长途旅行变得极其困难。
“我们的目标是确保航天器的能够降落在距离预定着陆点几米的范围内。” Patla表示。