《受昆虫启发的机器人制造柔性外骨骼,可实现柔性骨架印刷》

  • 来源专题:数控机床——前沿技术
  • 编译者: icad
  • 发布时间:2019-12-06
  • 昆虫通常具有各种复杂的外骨骼结构,可以为它们的运动和日常活动提供支持。为昆虫启发型机器人制造与这些自然存在的结构相匹配的人造外骨骼是机器人技术领域的关键挑战。

      尽管研究人员已经提出了几种制造工艺和技术来为昆虫灵感的机器人生产外骨骼,但是其中许多方法极其复杂,或者依赖于昂贵的设备和材料,这使得它们在实际批量化制造中不可行,并且难以在更大范围内应用。

      考虑到这一点,加利福尼亚大学圣地亚哥分校的研究人员最近开发了一种新工艺,用于设计和制造具有外骨骼结构的昆虫启发式机器人的组件。他们在arXiv上预先发表的一篇论文中介绍了称为柔性骨架印刷的这一过程。

      研究人员在论文中写道:“受昆虫外骨骼的启发,我们提出了一种称为'flexoskeleton'印刷的新制造工艺,该工艺能够快速,方便地制造混合型刚性/软性机器人。”

      到目前为止,通常使用昂贵的材料和3D打印机以及多步铸造和机器加工工艺来制造具有刚性和软性部件的混合机器人。在他们的研究中,加州大学圣地亚哥分校的研究团队着手创建一种更便宜且更易于使用的新制造方法。

    a)解释研究人员介绍的打印过程如何工作的图。b)在透明PC层上打印后立即使用研究人员的方法创建的四足机器人。c)从PC层释放后的四足机器人。
    来源:江,周

      他们开发的柔性骨架印刷方法依赖于消费级熔融沉积材料(FDM)3-D打印机的改编,该打印机在沉积材料和打印机的柔性基础层之间提供了非常强的粘合强度,此过程可用于为具有不同形状和形态的昆虫启发机器人创建外骨骼。

      值得注意的是,研究人员提出的制造方法可以同时被新手和专家用户使用,因为它相当简单易懂,它也比其他制造方法便宜得多,因为它所依赖的材料和设备相当便宜并且容易获得。

      在他们的研究中,该团队通过使用它来设计和测试各种规范的屈曲骨骼元素,证明了其方法的可行性。然后,他们将产生的所有元素组合到具有柔性外骨骼结构的步行四足机器人中。

      研究人员在论文中写道:“我们开发的方法在很大程度上依赖于表面特征的三维几何形状及其对零件局部机械性能的贡献之间的相互关系。” “我们预想,这种方法将使一类新的受生物启发的机器人成为重点,重点放在机械设计和运动之间的相互关系上。”

      将来,由这组研究人员设计的新设计和制造工艺可以促进众多昆虫启发式机器人的开发。由于该技术比大多数现有方法更直接,更实惠,因此还可以使现有或新机器人更易于扩展,从而增加其被大量生产并投放市场的机会。

相关报告
  • 《工业机器人实现柔性制造离不开哪些核心部件》

    • 来源专题:数控机床——前沿技术
    • 编译者:杨芳
    • 发布时间:2017-09-25
    • 对于工作在自动化生产线上的工业机器人来说,其完成最多的一类操作是“抓取-放置”动作。为了完成这类操作,对被操作物体定位信息的获取是必要的,首先机器人必须知道物体被操作前的位姿,以保证机器人准确地抓取;其次是必须知道物体被操作后的目标位姿。 工业机器人夹具快换 机器人工具快换装置(Robotic Tool Changer)通过使机器人自动更换不同的末端执行器或外围设备,使机器人的应用更具柔性。这些末端执行器和外围设备包含例如点焊焊枪、抓手、真空工具、气动和电动马达等。工具快换装置包括一个机器人侧用来安装在机器人手臂上,还包括一个工具侧用来安装在末端执行器上。工具快换装置能够让不同的介质例如气体、电信号、液体、视频、超声等从机器人手臂连通到末端执行器。机器人工具快换装置的优点在于: 1. 生产线更换可以在数秒内完成; 2. 维护和修理工具可以快速更换,大大降低停工时间; 3. 通过在应用中使用1个以上的末端执行器,从而使柔性增加; 4. 使用自动交换单一功能的末端执行器,代替原有笨重复杂的多功能工装执行器。 机器人工具快换装置,使单个机器人能够在制造和装备过程中交换使用不同的末端执行器增加柔性,被广泛应用于自动点焊、弧焊、材料抓举、冲压、检测、卷边、装配、材料去除、毛刺清理、包装等操作。另外,工具快换装置在一些重要的应用中能够为工具提供备份工具,有效避免意外事件。相对人工需数小时更换工具,工具快换装置自动更换备用工具能够在数秒钟内就完成。同时,该装置还被广泛应用在一些非机器人领域,包括托台系统、柔性夹具、人工点焊和人工材料抓举。 工业机器人视觉引导与定位 对于工作在自动化生产线上的工业机器人来说,其完成最多的一类操作是“抓取-放置”动作。为了完成这类操作,对被操作物体定位信息的获取是必要的,首先机器人必须知道物体被操作前的位姿,以保证机器人准确地抓取;其次是必须知道物体被操作后的目标位姿,以保证机器人准确地完成任务。 在大部分的工业机器人应用场合,机器人只是按照固定的程序进行操作,物体的初始位姿和终止位姿是事先规定的,作业任务完成的质量由生产线的定位精度来保证。为了高质量作业,就要求生产线相对固定,定位精度高,这样的结果是生产柔性下降,成本却大大增加,此时生产线的柔性和产品质量是矛盾的。 视觉引导与定位是解决上述矛盾的理想工具。 工业机器人可以通过视觉系统实时地了解工作环境的变化,相应调整动作,保证任务的正确完成。这种情况下,即使生产线的调整或定位有较大的误差也不会对机器人准确作业造成多大影响,视觉系统实际上提供了外部闭环控制机制,保证机器人自动补偿由于环境变化而产生的误差。 理想的视觉引导与定位应当是基于视觉伺服的。首先观察物体的大致方位,然后机械手一边运动一边观察机械手和物体之间的偏差,根据这个偏差调整机械手的运动方向,直到机械手和物体准确接触为止。但是这种定位方式在实现上存在诸多困难。 直接视觉引导与定位是一次性地对在机器人环境中物体的空间位姿进行详细描述,引导机器人直接地完成动作。与基于视觉伺服的方法相比,直接视觉引导的运算量大大减少,为实际应用创造了条件,但这必须基于一个前提:视觉系统能够在机器人空间中(基坐标系中)精确测定物体的三维位姿信息。
  • 《柔性制造系统成为离散制造行业智能工厂建设新方向》

    • 来源专题:数控机床与工业机器人
    • 编译者:icad
    • 发布时间:2019-03-27
    • 如何实现生产的柔性化是众多制造企业的切实需求,目前很多企业针对小批量、多品种零部件的生产,大多采用购买单台数控加工中心或钣金加工设备,虽然保证了产品加工的灵活性,但设备OEE低,需要频繁的调整工夹具,工艺稳定差,且影响生产效率,难以满足企业的需求,为了改善这种状况,很多企业开始关注到柔性制造中最具代表性的技术FMS柔性制造系统。这种系统不但可以支持企业昼夜连续“无人化生产”,还能够满足企业多品种、中小批量的加工管理需求,并且能够有效减少毛坯和在制品的库存量,同时保障产品质量的一致性。FMS是车间级自动化 、柔性化、智能化开放式制造平台,具备企业横向、纵向良好的互联互通集成条件,是当前实施智能工厂 建设最有效的途径之一。全能型金属板材FMS柔性制造系统以机加工FMS为例,其构成由若干台加工中心,机器人 去毛刺单元和清洗单元,以及轨道运输车等设备组织,配备了立体货架,放置工件和工装,可以完成从初加工到精加工的全自动加工;除主控计算机外,还配备有数控程序管理计算机和分布式数控终端等,形成多级控制系统 或组成局部网络。