《美国科学家发现可将细胞RNA编辑最小化的碱基编辑器》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2019-05-21
  • 在一项新的研究中,来自美国布罗德研究所和哈佛大学的研究人员发现有证据表明使用碱基编辑器会导致细胞中出现意想不到的RNA编辑。相关研究结果发表在2019年5月8日的Science Advances期刊上,论文标题为“Analysis and minimization of cellular RNA editing by DNA adenine base editors”。在这篇论文中,他们描述了他们对CRISPR类型腺嘌呤碱基编辑器(ABE)的研究,以及他们取得的发现。

    ABE将一个DNA碱基对转换成另一个DNA碱基对,从而允许修复某些细胞类型中的突变,而不会产生不想要的编辑效应。据认为,ABE还有潜力校正几乎一半已知的导致医学疾病的遗传异常。ABE的科学基础对医学界来说变得越来越重要。不幸的是,最近的一些研究已发现,ABE可能也会导致意料之外的编辑。在今年3月,一个研究团队发现胞嘧啶碱基编辑器3型(CBE3)以高于正常的速率诱导单核苷酸变异。在上个月,另一个研究团队发现胞嘧啶碱基编辑器(CBE)和ABE导致RNA中的脱靶编辑。在这项新的研究中,这些研究人员试图在使用ABE时进一步测试脱靶编辑,并在确认后找到一种解决方案。

    这些研究人员以一种包括人细胞系中所有细胞RNA转录本的方式分析了ABE的最新版本,称为ABEmax,而且他们使用比其他人使用的更灵敏的工具来做到这一点。他们报道他们确实在RNA样本中发现了低水平的脱靶编辑。为了解决这个问题,他们开发了在保留在靶碱基编辑的能力同时导致较少RNA编辑的新型ABE变体(基于灭活的野生型大肠杆菌)。他们进一步报道说,这些新型变体是以一种让RNA和DNA编辑过程解耦合的方式构建出来的,这样就能够最大限度地减少DNA和RNA中的脱靶编辑。

    这些研究人员得出结论:由于较低的RNA编辑且较短的RNA半衰期,对未来研究的干扰程度可能取决于它们的具体应用。他们建议寻求让RNA编辑最小化的科学家们使用他们构建出的命名为ABEmaxQW的新变体。

  • 原文来源:https://advances.sciencemag.org/content/5/5/eaax5717
相关报告
  • 《CRISPR碱基编辑器能够诱导大量的脱靶RNA编辑》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-04-25
    • 在一项新的研究中,来自美国麻省总医院、哈佛医学院和哈佛大学陈曾熙公共卫生学院的研究人员报道近期开发的几种在单个DNA碱基中产生靶向变化的碱基编辑器能够在RNA中诱导广泛的脱靶效应。他们还描述了对碱基编辑器变体进行基因改造可显著降低RNA编辑的发生率,这同时也会增加在靶DNA编辑的精确度。相关研究结果于2019年4月17日在线发表在Nature期刊上,论文标题为“Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors”。 论文通讯作者、麻省总医院病理学系的J. Keith Joung博士表示,大多数关于脱靶基因编辑的研究都集中在DNA上,但是他们发现这种技术也可以诱导大量的RNA改变。这一令人吃惊的发现表明,当考虑碱基编辑器在细胞中的不想要的脱靶效应时,需要考虑的不仅仅是基因变化。他们还发现构建选择性地降低脱靶RNA编辑同时保留想要的在靶DNA编辑的变体来减少这些影响是可行的。 与CRISPR-Cas基因编辑核酸酶---它诱导靶双链DNA断裂,从而导致基因变化---不同的是, CRISPR碱基编辑器能够改变DNA链中的单个核苷酸而不用诱导这种双链DNA断裂。Joung解释,如果可以将CRISPR-Cas核酸酶比作为剪刀,那么就可将碱基编辑器比作为铅笔。当使用CRISPR-Cas修饰形式的融合蛋白靶向结合到目标位点上时,碱基编辑器使用一种称为脱氨酶的酶修饰一个特定核苷酸,从而产生可导致特定DNA改变的变化---比如,将胞嘧啶改变为胸腺嘧啶。 虽然大多数科学家都专注于碱基编辑器的DNA编辑活性,但是最常用的胞嘧啶→胸腺嘧啶编辑器(C→T编辑器)中的脱氨酶最初是因它的修饰RNA的能力而被鉴定出的。这导致Joung及其团队研究它是否可能诱导脱靶RNA效应。他们在肝脏和胚胎肾细胞系中的实验表明,虽然他们测试的这种常用的碱基编辑器在靶DNA位点上诱导高效的编辑,但是它也导致整个转录组---在细胞中发生转录的全部RNA---中发生数万个胞嘧啶→尿嘧啶(C→U)编辑。当测试一种较新的腺嘌呤靶向碱基编辑器时,他们发现了类似的结果。 为了研究减少或消除不需要的RNA编辑的可能性,Joung团队筛选了16种具有脱氨酶改造版本的碱基编辑器(即碱基编辑器改造版本),从中鉴定出两种碱基编辑器改造版本与它们的原始版本同样高效地诱导在靶DNA编辑,同时诱导显著少的RNA编辑。实际上,这些SECURE(SElective Curbing of Unwanted RNA Editing, 选择性抑制不需要的RNA编辑)变体甚至要比未经基因改造的脱氨酶更精确地诱导所需的DNA编辑。 论文第一作者Julian Grünewald博士指出,他们利用这两类碱基编辑器观察到的数以万计的RNA编辑和这些变化发生的频率感到非常吃惊。他们也很高兴看到能够通过使用其SECURE碱基编辑器变体大幅降低这些不需要的RNA编辑。 Joung指出,研究这些RNA编辑对CRISPR碱基编辑的实验和临床应用的任何潜在影响是他的团队正在采取的重要下一步。他们发现,研究的这种广泛使用的胞嘧啶碱基编辑器当在一种人细胞系中表达时对细胞活力具有适度的影响,而SECURE变体则不会。对研究应用而言,正在使用碱基编辑器的科学家们将需要在他们的实验中考虑潜在的RNA 脱靶效应。对治疗性应用而言,他们的研究结果进一步论证了将碱基编辑器表达的持续时间限制在尽可能短的时间内,以及在安全评估中考虑RNA 脱靶效应的潜在影响并使之最小化的重要性。 Joung补充,正在开展的研究工作的另一个重要领域是扩大其努力,以尽量减少这些不需要的脱靶RNA编辑。他们当前正在尝试设计SECURE腺嘌呤碱基编辑器并探索使用其他脱氨酶的而不是其研究的碱基编辑器中使用的脱氨酶的胞嘧啶碱基编辑器的脱靶RNA效应。他们的目标是产生一套具有最小RNA编辑活性的碱基编辑器,从而可用于研究和治疗性应用。
  • 《美科学家开发出靶向能力和编辑效率得到改善的碱基编辑器》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-29
    • 在一项新的研究中,来自美国布罗德研究所、哈佛大学和波士顿儿童医院的研究人员利用一种称为“噬菌体辅助的碱基编辑器连续进化(phage assisted continuous evolution of base editors, BE-PACE)”的系统开发出一种改进碱基编辑器的编辑效率的新方法。相关研究结果于2019年7月22日在线在Nature Biotechnology期刊上,论文标题为“Continuous evolution of base editors with expanded target compatibility and improved activity”。在这篇论文中,他们描述他们的新系统及其作用机制。 CRISPR基因编辑系统的开发使得通过对基因进行编辑来阻止遗传性疾病成为可能。但是这种系统的问题仍然存在---最值得注意的是,已有研究表明有可能对错误的基因进行了编辑。正因为如此,科学家们正在寻求提高这些系统的编辑准确性的方法,使得它们足够安全而可用于人类患者。 在这项新的研究中,这些研究人员开发出一种称为BE-PACE的系统,它可用于改进胞嘧啶碱基编辑器(CBE)。他们利用他们的系统进化出一种称为evoAPOBEC1-BE4max的CBE。他们报道他们的测试表明它对胞嘧啶(在GC序列中)进行编辑的效率是现有系统的26倍,即便它对所有其他的测试序列中的胞嘧啶进行编辑时,也仍然保持较高的编辑效率。他们进一步报道对一种经过进化的称为evoFERNY的脱氨酶的测试结果表明它比APOBEC1小29%。 这些研究人员指出,限制其他CBE的编辑效率的因素之一是APOBEC1对天然序列的偏好性,这导致GC基序发生较差的脱氨作用。为了克服这个问题,他们使用了PACE系统,这是因为它们能够在一天内进行多代选择、突变和复制。他们的目标是构建出具有改善的靶向能力的碱基编辑器。他们报道,他们开发的BE-PACE系统在过夜的宿主细胞培养物中以几乎十倍的噬菌体增殖速率进行了测试,而且它们展示出对携带碱基编辑器的噬菌体(下称碱基编辑器噬菌体)的选择性提高了1000倍。 这些研究人员还构建出另一种BE-PACE系统来解决APOBEC1的序列限制问题。这导致他们开发出的噬菌体克隆在测试期间的活性得到了28倍的改善。为了证实它们在碱基编辑上得到改进,他们对BE4max碱基编辑器的几种进化的脱氨酶变体进行了亚克隆,并使用向导RNA将它们插入到测试细胞中。