《科学家有望利用新型“即插即用”型病毒平台开发出HIV及寨卡等病毒的预防治疗性疫苗》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-06-12
  • 日前,在美国亚特兰大举办的2018年美国微生物学会年会上,来自美国生物技术公司GeoVax的科学家们发表了他们最新的研究成果,研究人员开发了一种灵活的“即插即用”技术平台("Plug and Play" technology platform),其能够帮助运输单剂量疫苗,从而更加完全地保护人们有效抵御新发感染性疾病,比如寨卡病毒、拉沙热和埃博拉病毒等。

    研究者Rahul Basu表示,并不像当前其它可用的疫苗技术,我们所开发的新型技术能够提供一种真正的即插即用型平台,其适用于更加广泛的生物威胁、而且适合快速大规模的疫苗生产。利用该平台生产出的疫苗具有一定的安全性、高度免疫原性,同时还能有效治疗多种多样的适应症。

    这种疫苗适用于反复使用、且能在冰箱温度下保持稳定,或者能冻干适用于非冷链的无针应用;而且其还能够迅速扩大规模,用于应对流行病反应和疫苗的接种。研究者Basu说道,在疫苗平台技术中存在的重大为满足的医疗需求常常能够快速有效地对生物威胁产生反应,而诸如这样的平台也能够提供安全的疫苗,并在单一剂量注射后为个体提供完全的保护力。

    在概念研究研究中,研究人员检测了三种独立的疫苗在抵御三种不同家族病毒成员上的作用效果;利用多种致命性模型进行研究后,研究者发现,单一剂量注射后,每一种疫苗都能够提供完全的保护效力,比如寨卡病毒疫苗,在正常小鼠机体中注射单一剂量的MVA-寨卡病毒疫苗就能为期提供100%的保护力,来抵御直接进入小鼠大脑中具有致死剂量的寨卡病毒;而在猕猴模型中,单一注射MVA-VLP-埃博拉病毒疫苗也能够为其提供完全的保护力;同样地,MVA-VLP-拉沙热疫苗也能够为小鼠提供完全的保护力。

    研究者表示,为了阐明这种平台的广泛用途,我们开发出了预防性和治疗性的疫苗来治疗其它感染性疾病和癌症,其中就包括HIV治疗性和预防性疫苗(正在进行高级临床试验阶段)、适用于马尔堡、苏丹和疟疾的预防性疫苗,以及慢性乙肝感染的治疗性疫苗和基于肿瘤相关抗原(TAA)的癌症疫苗。这些检测单一剂量疫苗应对新发感染性疾病效力的相关研究得到了美国国家过敏和传染病研究所等机构的资助。

  • 原文来源:https://medicalxpress.com/news/2018-06-vaccines-aids-zika-viral-platform.html
相关报告
  • 《科学家有望利用水痘病毒开发出新型的HIV疫苗》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-02-13
    • 近日,一项刊登在国际杂志Journal of Clinical Investigation上的研究报告中,来自多伦敦大学和曼尼托巴大学通过研究有望利用水痘病毒开发出抵御HIV的新型疫苗;长期以来科学家们一直将水痘病毒视为一种疫苗形作为潜在的载体来运输HIV基因并产生抵御HIV的机体免疫力,但对这种方法的安全担忧限制了新型HIV疫苗开发的进程。 这项研究中,研究人员首次发现,水痘疫苗在生殖器粘膜中并不会诱发一种不受欢迎的HIV免疫状态,就像研究人员此前在临床试验中观察到的那样,即使用相似的病毒载体或在血液中进行研究;研究者Kelly MacDonald说道,我们调查了一个对这种疫苗策略构成障碍的重要安全问题,目前我们正在设法检测一种基于水痘病毒的HIV疫苗策略。 研究者在受HIV严重影响的肯尼亚地区进行了这项研究,他们招募了44名健康、HIV阴性的女性参与者,这些参与者感染HIV的风险较低,水痘免疫测试呈阳性;研究人员给予参与者一种仅抵御水痘病毒的高剂量疫苗,随后每隔4周、8周及12周检测每一名参与者的血液、宫颈粘膜细胞以及直肠粘膜细胞。研究结果表明,在接种疫苗12周后,相比接种疫苗前个体在激活HIV靶向细胞的频率上并无显著差异。 研究者指出,这种疫苗能增强女性抵御血液和生殖器部位水痘病毒的免疫力,生殖器区域的这种免疫反应是HIV疫苗概念研究中的重要发现;水痘病毒和HIV疫苗混合制剂或许就能利用水痘疫苗在体内经历沉默的再激活周期这一事实而发挥作用,当其从休眠状态中觉醒后,机体免疫力就能快速对其控制,从而实现免疫力被增强的效应。 研究者MacDonald说道,将HIV的基因插入到水痘病毒中就像是项链上的珠子一样,随着水痘病毒的基因或“串珠”(HIV)的基因被翻译成为蛋白质,HIV的基因也就会被翻译成蛋白质从而刺激机体产生对HIV的免疫力,但并不会让机体感染HIV,研究者希望,当水痘病毒被再次激活后,其就会刷新对HIV的免疫力。下一步研究人员将会在非人类灵长类动物中检测这种新型的疫苗策略,并开始进行人类临床试验开发水痘病毒作为载体的HIV疫苗。
  • 《PNAS:科学家有望开发出阻断人类拉沙病毒感染的新型疗法》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-26
    • 拉沙热(Lassa fever)是一种在西非地区非常常见的病毒性疾病,尽管在严重病例中其死亡率为15%,但在孕妇中的死亡率高达90%,而且拉沙热还会导致四分之一患者失聪,目前并没有疫苗或抗病毒药物来帮助预防拉沙热。近日,一篇发表在国际杂志Proceedings of the National Academy of Sciences上题为“Proximity interactome analysis of Lassa polymerase reveals eRF3a/GSPT1 as a druggable target for host-directed antivirals”的研究报告中,来自La Jolla免疫研究所等机构的科学家们通过研究揭示了拉沙病毒(Lassa virus)在人类宿主机体中复制的分子机制。 文章中,研究者揭示了一种关键的拉沙病毒蛋白(聚合酶)如何通过操控人类宿主机体的细胞蛋白来驱动感染的发生,相关研究结果或有望帮助开发新型疗法来靶向作用这种相互作用从而治疗拉沙热患者。研究者Jingru Fang说道,目前没有专门针对拉沙病毒的抗病毒药物,这就是为何对于研究人员而言识别出该病毒的潜在可药物作用靶点来抵御病毒感染非常重要的原因了。 拉沙病毒仅能编码四种病毒蛋白,其中名为聚合酶的特殊蛋白能指导病毒基因组的复制及基因表达过程,从而产生病毒需要扩散到新宿主细胞中所需的材料,如果能找到阻断病毒聚合酶的药物或许就能阻断拉沙病毒的感染。随后研究人员通力合作开始搜索能扮演拉沙病毒聚合酶伴侣的宿主细胞蛋白。研究者Fang及其同事对拉沙病毒聚合酶进行了工程化改造来使其携带酶标签,其能利用一种特殊的化学手柄标记到聚合酶相互作用的宿主蛋白上,随后研究者将这些携带化学手柄的宿主蛋白“捞”起来,并利用质谱技术识别能与拉沙病毒聚合酶相互作用的宿主蛋白。 这就好像定义了拉沙病毒的聚合酶社交网络,从而就能帮助研究人员寻找其合作伙伴了,研究人员利用活的拉沙病毒进行了功能性的筛查,结果发现,其中一种宿主蛋白对于拉沙病毒的感染非常重要,在42个能与拉沙病毒聚合酶相互作用的宿主蛋白中,研究人员重点关注了一个可药物靶向作用的靶点,即GSPT1,其与拉沙病毒聚合酶存在物理和功能上的关联,其能促进拉沙病毒的感染。这项研究中,研究人员首次揭示了拉沙病毒聚合酶和宿主细胞蛋白之间的分子交联作用,然而,这也是有史以来科学家们第二次将宿主蛋白GSPT1与病毒感染关联起来的研究,此前在Cell Reports杂志上发表的一篇研究报告中,研究人员发现,在埃博拉病毒感染过程中,病毒的聚合酶能拦截宿主机体的GSPT1蛋白。 如果研究人员能找到一种方法来干扰GSPT1和拉沙病毒聚合酶之间的关联,或者如果能简单地移除GSPT1蛋白,那么或许就有望阻断拉沙病毒的感染。让研究人员惊讶的是,他们关注了一种名为CC-90009的候选药物,其能破坏GSPT1蛋白,目前在临床试验中其正在被作为一种癌症疗法进行相关测试。为了观察是否其能重新定向当前的GSPT1抑制剂来抵御拉沙病毒感染,研究人员在高级别实验室中将CC-90009加入到拉沙病毒感染的人类活细胞中,结果发现,CC-90009疗法能明显抑制拉沙病毒的生长且并不会出现明显的细胞毒性作用。 研究者表示,这种相同的小分子药物作为埃博拉病毒感染的疗法或许是可行的,而且CC-90009还能在埃博拉病毒感染的后期时间点降低病毒的滴度;研究者Fang说道,将这一研究发现转化为治疗干预措施或许仍然需要时间,目前研究人员需要证实CC-90009能抑制病毒感染动物模型中拉沙病毒和埃博拉病毒的复制,但至少他们已经有了一个起点了。综上,本文研究结果揭示了近乎蛋白质组学技术来阐明并描述尚未定义的宿主-病原体之间相互作用组的可行性,这或许就为揭示新的生物学以及寻找新型靶点来开发抵御高致病性RNA病毒感染的抗病毒制制剂。 原始出处: Jingru Fang et al, Proximity interactome analysis of Lassa polymerase reveals eRF3a/GSPT1 as a druggable target for host-directed antivirals, Proceedings of the National Academy of Sciences(2022). DOI: 10.1073/pnas.2201208119 Jingru Fang et al, Functional interactomes of the Ebola virus polymerase identified by proximity proteomics in the context of viral replication, Cell Reports (2022). DOI: 10.1016/j.celrep.2022.110544