《复旦大学彭慧胜团队新突破:锂电池容量接近理论值》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-12-27
  • 具有极高理论能量密度(3505 Wh/kg)的锂氧电池被认为是未来高能量密度电池的“最终选择”之一,然而目前在实际应用中却面临着诸多挑战。其中,作为锂氧电池重要构成部分的锂金属负极虽然理论比容量高达3860 mAh/g,但因存在着充放电过程中不断形成枝晶引起短路和一系列副反应等问题而无法实现其应用价值。

    近日,复旦大学彭慧胜团队将取向碳纳米管层层交错组装作为锂金属骨架成功实现了具有超高比容量(3656 mAh/g)、无枝晶的复合锂金属负极,并基于此负极大幅提升了锂氧电池的循环性能,为高性能锂金属负极及锂氧电池的材料设计提供了新的思路。日前国际权威学术期刊《德国应用化学》(Angew. Chem. Int. Ed.)发表了该成果。

    图1. (a)-(d)常见锂箔负极和锂/碳管骨架复合电极锂沉积的仿真电场模拟及示意图,具有高比表面积的3D-CSC导电骨架能有效避免电势集中,促进均匀沉积。(e)-(g)不同几何结构碳纳米管骨架在锂金属沉积量增大时的应力分析模拟。

    在该体系中,取向碳纳米管能形成高比表面积(424.2 m2/g)的导电网络,在锂金属沉积/剥离过程中能有效分散实际电流密度,缓解锂枝晶的生成,防止枝晶刺穿隔膜引起短路等安全问题。研究人员通过层层交错组装三维取向碳纳米管骨架,得到初始厚度仅为1 μm左右的碳纳米管骨架,可直接作为集流体进行电池组装;其厚度随着锂金属沉积量的增加而增大,始终保持电极整体处于较为稳定的状态,缓解了锂金属负极因充放电过程中产生巨大体积变化导致SEI膜破裂加剧电解液副反应等问题;得益于该三维骨架轻质(~0.07 mg/cm2)的特点,在引入骨架解决锂负极枝晶问题的同时,所得到的复合电极展现出3656 mAh/g的比容量,达到了锂金属理论容量的94.7%。将该复合锂金属负极构建锂氧全电池表现出大幅提升的循环稳定性。

    图2. 交错碳纳米管复合锂金属负极(Li/3D-CSC)与其他应用于锂氧电池中的负极性能对比(左)及与其他典型锂电极的性能对比(右)。

    该研究中提出的通过一维纳米材料构筑层层交错结构在结构化锂负极及相关电池构建中具备普适性。未来研究课进一步优化锂金属骨架的几何微结构、材料构成及设计界面,继续提升锂负极的稳定性和电化学性能,从而得到更高性能的锂氧电池助力电动汽车等领域的发展。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=380221
相关报告
  • 《“打一针”让锂电池寿命增十倍 复旦新成果登上《自然》》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-14
    • 当锂电池的寿命即将终结时,为它“注射”一针新分子,就能使它恢复原本的充电容量,甚至使得原本只能保证6-8年/1000-1500次充放电的电池,维持1万次充放电,且电池健康水平与出厂时几乎仍然一样。这是复旦大学高分子科学系、聚合物分子工程全国重点实验室、纤维材料与器件研究院、高分子科学智能中心彭慧胜/高悦团队完成的最新成果。 相关研究以《外部供锂技术突破电池的缺锂困境和寿命界限》(“External Li supply reshapes Li-deficiency and lifetime limit of batteries”)为题,2月13日发表在《自然》主刊。 从1千到1万 锂电池在生活中越来越重要,但关于锂电池,却有许多未解的难题。比如,电动车电池的寿命有限、低温使用加速电池损坏、储能电站和极端环境储能场景对电池寿命的需求提升至少一个数量级等,更不用说,随着新能源相关行业发展,我们很快会面临大规模电池退役回收,而这很可能造成环境的污染和资源的浪费。如何延长锂电池的寿命?彭慧胜、高悦团队一直在思考如何通过基础研究创新来提供解决方案。此次团队提出了打破电池基础设计原则中锂离子依赖共生于正极材料的理论,通过AI和有机电化学的结合,成功设计了新的锂载体分子,将电池活性载流子和电极材料解耦。 “这一锂载体分子从未被公开报道过。”高悦告诉记者。但是这种载体分子可以像药物一样,通过“打针”的方式注入废旧衰减的电池中,精准补充电池中损失的锂离子,恢复容量。使用这一技术,电池在充放电上万次后仍接近出厂时的健康状态,循环寿命从目前的500-2000圈提升到超过12000-60000圈。更重要的是,电池材料必须含锂的束缚规则也被打破,使用绿色、不含重金属的材料构筑电池成为可能。 基础科学与AI研究范式的结合 电池中的活性锂离子由正极材料提供,锂离子损耗到一定程度后电池就不得不报废,这是锂离子电池自1990年问世以来一直遵循的基本规律。此次团队通过构建新分子并用于对电池的“康复”,可说是“异想天开”和AI研究范式的结合。 高悦告诉记者,他们通过大量验证发现,电池衰减和人生病一样,是某个核心组件发生了异常,而其它部分仍然保持完好。“那为什么不能像治病那样,为电池进行精准的、原位无损的锂离子补充呢?”团队提出了大胆设想——设计锂离载体分子,将其注射进电池。 但是,目前人类已知的任何分子都不具备这样的功能,同样也无法依靠理论和经验进行设计。为此,团队利用AI结合化学信息学,将分子结构和性质数字化,引入有机化学、电化学、材料工程技术方面的大量关联性质,构建数据库,利用非监督机器学习,进行分子推荐和预测,成功获得了从未被报道的锂离子载体分子——三氟甲基亚磺酸锂(CF3SO2Li)。 团队合成新分子后,验证了其具备各种严苛的性能要求,且成本低、易合成。同时针对现实需求,团队研究相关的验证实验都在真实电池器件上完成。验证发现,这一分子和解决方案与各类电池活性材料、电解液以及其他组分都有良好的兼容性,成功在软包、圆柱、方壳和纤维状锂离子电池器件上实现应用。 目前,团队正开展锂离子载体分子的宏量制备,并与国际顶尖电池企业合作,力争将技术转化为产品和商品,助力国家在新能源领域的引领性发展。复旦大学为这一成果的独立通讯单位,彭慧胜和高悦为该论文通讯作者,高分子科学系博士研究生陈舒为第一作者,合作单位包括南开大学、湖南工程学院和深圳大学,研究得到科技部、国家自然科学基金委、上海市科委、复旦大学科学智能专项基金等项目支持。
  • 《新突破!锂离子电池容量大幅提升》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-05-31
    • 据美国《科学进展》杂志29日消息称,美国西北大学研究团队研发出一种全新材料,可用于制造性能稳定的大容量锂离子电池,从而大幅提升智能手机、电动汽车等的续航时间,甚至可以延长到目前的两倍多。 锂离子电池已是现代高性能电池的代表,应用最为广泛,其主要依靠锂离子在正极和负极之间移动来工作。而今消费电子和动力电池对能量密度提升的需求,推动着正极材料不断进步——通常,人们采用的是锂、氧和一种过渡金属的化合物为电池正极,这其中,正是过渡金属负责储存和释放电能,其性质也是电池容量的关键。 现阶段最常用的过渡金属是钴,而此前科学家研究发现,如果用镁取代钴,可以在提高容量的同时降低成本,但镁也有一定缺陷——电池性能退化太快,仅两轮充放电后就出现大幅下降。 据美国西北大学官方网站介绍,此次团队研发的新材料是掺有铬和钒元素的锂镁氧化物,其用作锂离子电池的正极,电池容量出现了大幅提高,同时兼具性能稳定、不会迅速退化的优点。 西北大学研究小组先是为锂镁氧化物材料建立了一个结构模型。该模型详细到了单个原子,团队借此分析了全部充放电过程,发现其中的氧也会参与存储电能,因而容量比以往要大。 随后,研究人员尝试了将不同元素掺入锂镁氧化物的方案,以期计算出不同混合物各自的储能效果。最终他们发现,掺入铬和钒能在保持电池大容量的同时实现最稳定性能。 研究人员表示,下一步他们将在实验室中检验该新材料的实际应用表现。