《硅和磷烯复合物阳极大幅提升锂电池充电速率及容量》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-11-26
  • 印度科学教育和研究学院(Indian Institute of Science Education and Research,IISER)的一支研究团队采用硅和磷烯(phosphorene)研发全新的复合物,用于制作锂离子电池的阳极,该团队由Satishchandra Ogale牵头。

    据科研人员透露,该材料非常高效,相较于当前的锂离子电池,新款阳极材料将电池的充电速度和电池容量分别提升了3倍和5倍,同时还降低了电池的整体重量。若仅将硅用作电池的阳极材料,会导致其循环稳定性较弱。

    作为实验的一环,IISER研发人员利用磷烯,在纯型的二维材料,其利用纳米硅颗粒物及少量黑磷烯层或纯磷烯来制作电池阳极。

    Ogale表示:“事实上,使用磷烯所取得的性能优势源自于磷烯的结构性设计,可提供较高的灵活性及弹性。而高度的机械灵活性使其能够容纳电池内的锂离子,提升电池的充电速度。”

    研究人员表示,该电池采用了新研发的材料,该类材料或许也能被用于传感器、场效应晶体管(field effect transistors)及光电元件(optoelectronic devices)。

    IISER或许能在实现相同容量的情况下,缩小电池的尺寸并减轻其重量。

    该研究的首席作者Kingshuk Roy表示:“尽管硅基电池是未来的发展方向,最大的挑战在于维持其高度的稳定性,从而延长电池的充放电使用寿命。”

    在第一次充电测试中,新款电池的容量保持率为78%,这意味着不可逆损失(irreversible loss)微乎其微,而这类不可逆损失恰恰是锂电池硅基阳极与碳复合物混合后的通病。

    磷烯具有结构性优势,可被用作粘合剂,防止开裂。在高充电速率条件下,对其进行观察。

    据称,该款材料制作的锂电池可耐受数百次充放电循环。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=344201
相关报告
  • 《锂电池改变世界》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-10-11
    • 2019年诺贝尔化学奖为表彰锂电池技术的不断完善和进取,授予了约翰•B•古迪纳夫、M•斯坦利•威廷汉和吉野彰。 “氢氦锂铍硼碳氮氧氟氖钠镁铝硅……”,这是我们初中化学课脑袋发大也要背诵的元素周期表。氢是最活跃的气体,锂是最活跃的金属,甚至与非常稳定的氮都能发生化学反应。用锂来制造电池,如果没有这些伟大的发明家,你的手机就如同一个打开保险盖的手榴弹。 上世界70年代,人们将金属锂作为电极,研发出了锂电池。但由于锂的活跃性,电池起火爆炸问题难以解决。 古迪纳夫可以算是一个杂家出身。在大学学习过古典文学、哲学、数学,仅仅修过两年化学课。二战中参加美军,在太平洋战场上从事气象数据收集。战后回到大学学习物理,博士毕业后又去研究固体磁性。1976年他54岁,进入牛津大学无机化学实验室当主任,才算开始将研究领域转入电池。到上世纪80年代,古迪纳夫发明了相对更加稳定的“钴酸锂”材料,大幅度降低了锂电池易燃易爆的几率,算是把手榴弹的保险盖又盖上了,使其能够成为一种实用的产品能够进入我们的生活。 显然,在古迪纳夫眼中,钴酸锂远未达到理想的状态。1997年,75岁的他又拿出了“磷酸铁锂”材料的发明,进一步提升了锂电池的安全性。至此,他被誉为“锂电池之父”。在90岁的时候,他再次发布了更安全、更廉价、更实用的“全固态电池”技术,避开了锂电池内电解液可能带来的不安全性,算是可以彻底不用担心手机变成手榴弹了。而今年获得诺贝尔奖,他已97岁。 怀廷汉姆研究用层状材料制造电极,将锂离子存储在钛硫化物的片层内。锂离子可以从一个电极穿梭到另一个电极,从而形成可充电电池。吉野彰研究将碳基材料为阳极用于锂电池,再用钴酸锂为阴极,去除电池中的易燃易爆的金属锂,提高了安全性,使锂电池更加实用。正是他们锲而不舍的研究,将锂电池成为改变我们生活最主要的发明之一。 今天,锂离子电池储能技术已经极深地渗透到我们社会生活的方方面面。30多年前,我曾经是一个职业新闻摄影记者,一个头疼的问题是如何保持闪光点有充足电力完成采访。当时我们使用镍氢储能电池,一组四个充电电池只能保证不到一个胶卷36张的闪光照明,而且价格很贵、寿命很短。电池还有记忆,充电前要先放电,一组电池连放带充要十几个小时,麻烦无比。若闪光灯不亮了,你就拍不到需要的照片,回来就无法向总编交差。那时每次出门都要带上一大堆蓄电池,还要带上干电池备用。而今天,如果使用锂电池基本不用担心这种问题。同时,技术的急速进步已将新闻摄影记者这个职业基本淘汰,任何一个记者甚至普通人都可以拿一部智能手机抢拍和发布最及时的新闻图像。 今天,我们的手机锂电池储电量都已超过4000mAh,让手机不仅是一个电话,而且成为几乎无所不能的智能信息终端。在高强度使用的情况下也可支持近十个小时,而且随时可以快速充电,极大的方便了我们的生活,以至于我们拿一部手机就可以行走天下。 1990年,我们在美国见到的第一个手提电脑,要卖2000多美元,CPU是386SX,速度只有16M,电池仅能为维持运行40分钟,而且不到1年就要更换新电池,换一块电池要几百美元。而今天,很多笔记本和平板电脑只卖几百美元,持续使用8小时,重量只有几百克。这除了电子技术的进步,也有电池技术进步的支撑。 电池技术进步让我们从互联网时代走向了移动互联时代,同时也改变了我们的交通和能源系统。日本曾经组织专家评估电池储能技术前景,多数专家不看好锂电池,认为其安全性、储能质量密度、成本都没有前景,所以日本车企押注氢燃料电池并重金投入。但是,没有想到埃隆•马斯克用日本自己生产的钴酸锂电池制造的电动汽车,一次充电居然可以行使600公里,基本替代了传统汽车,让氢燃料电池技术面临“既生瑜何生亮”的窘境。只能用免费提供技术和分享专利来忽悠中国,希望以此分担前期投入的成本。 埃隆•马斯克说:“不要相信业内专家告诉你技术已经登峰造极,任何技术都可能存在创新突破的巨大空间。”这一次三位老先生获得诺奖,恰恰证明了马斯克的判断。锂电池技术进步仍有巨大的空间,将颠覆的是整个世界。 中国国家电网在推进“泛在能源互联网”,一个重要的技术进步,就在于电力储能技术的突破。截至2019年6月,中国新能源汽车保有量达344万辆,其中纯电动汽车保有量281万辆,占新能源汽车总量的81.74%。纯电动汽车的性价比已经接近甚至越过临界点,预计2020年新能源车500万辆保有量的目标有望实现。根据规划,到2030年中国新能源车将达到2000万辆,其中80%是纯电动汽车。目前市场销售的主力车型行驶里程已达到400-500公里,蓄电池容量60-80千瓦时。如果在每辆车每天在用电高峰时段向电网返送10千瓦时电力,就是1.6亿千瓦的调峰容量,相当于现有抽水蓄能电站的5倍,将彻底颠覆既有电力系统的格局。 电网有足够的调峰容量,就可以接纳更多不稳定不确定的光伏和风电,就会有更多的家庭和企业通过分布式能源生产可再生能源电力进行储存或销售。电动汽车充电电池在从汽车退役后,仍可以长时间继续应用于分布式储能,使未来电力系统和今天的互联网一样无处不在并实现移动互动。能源、信息、交通、建筑、工业和农业,将因为电池而融为一体,实现泛在互联,而锂电池在其中担负了至关重要的任务。 中国要特别感谢约翰•B•古迪纳夫、M•斯坦利•威廷汉和吉野彰这三位伟大的发明家,因为中国是这些技术的最大受益者。这不仅是因为中国是智能手机和笔记本及平板电脑持有量最多的国家,他们的技术改变了我们沟通、交流、学习的方式。而且,中国还是电动汽车保有量最多的国家,大量的电动汽车不仅颠覆了我们的交通方式,减少了对石油的依赖,也改善了我们城市的空气质量。同时,中国还是相关产品最大的生产国和出口国,为我们创造了大量就业、税收和财富。 2018年全球前十大动力电池生产商中,中国企业占据7席。其中,宁德时代电池出货量全球第一,达到23.4GWh,第二名松下为20.7GWh,第三名比亚迪11.4GWh,第四名LG化学只有7.4GWh,第7名三星SDI仅有3GWh。2019年1-8月,我国动力电池装车量超过GW的有三家。其中宁德时代遥遥领先,达到13.64GWh,实现装车26.26万辆,占据市场份额的45.5%。 到2020年,中国的锂电池生产能力可以满足116.21万辆电动汽车的产量,其中58.02万辆乘用车,58.19万辆商用车。到2025年,将可满足生产262.47万辆电动汽车,其中150.67万辆乘用车,112.07万辆商用车。到那时,城市里的公交车和市政用车将可全部电动化,而大湾区、长三角和京津冀将可能率先实现交通零排放目标,城市空气质量将从根本上得以改善。 为此,我们应该再一次感谢这些获得诺贝尔奖伟大的发明家,感谢他们坚持不懈的努力,感谢他们用科学改变世界的精神。
  • 《《Nature》发表!成果或将大幅提升锂电池循环寿命和快充性能》

    • 来源专题:可再生能源
    • 编译者:武春亮
    • 发布时间:2024-05-22
    • 近日,原子能院中国先进研究堆全面开放应用取得重要进展!荷兰代尔夫特理工大学的Marnix Wagemaker教授团队与原子能院核物理研究所中子散射团队合作,在国际顶级期刊《Nature》(《自然》)上发表了 锂离子电池 领域的最新研究成果,题目为“Chemical short-range disorder in lithium oxide cathodes”(“锂离子氧化物正极中的化学短程无序”)。这是两个团队在《Nature Sustainability》(《自然可持续性》)和《Nature Communication》(《自然通讯》)期刊合作发表论文后的又一创新成果,或将大幅提升锂电池循环寿命和快充性能。 此次研究围绕有序层状氧化物开展,这是目前锂离子电池中最重要的 正极材料 之一。在进行深度充电时,该结构框架容易受到晶格应力、结构或机械化学降解的影响,导致电池容量急剧下降,从而导致电池寿命缩短。Wagemaker教授团队联合原子能院、中国科学院物理所、清华深研院等单位,提出了一种解决方法,成功将化学短程无序(Chemical short-range disorder,CSRD)引入到氧化物正极中,精确调节了锂和钴元素在晶格中的局域分布,使其跨越几个最近邻格点的间距,从而显著提升了锂电池的循环寿命和快充性能。研究利用中子粉末衍射技术获得锂和钴元素的分布特征,发现大约2.6%的钴离子位于锂层中,为证明CSRD结构提供了关键证据。 a. 正极材料LiCoO2的中子衍射谱 b. LiCoO2的晶体结构及结构中锂和钴元素的分布特征 中国先进研究堆共拥有25根垂直孔道,9根水平孔道,建成15台中子散射谱仪,性能指标达到整体国际先进、部分领先水平,可开展中子散射、中子成像、中子活化分析、燃料材料考验、放射性核素生产等工作。2023年以来,中国先进研究堆中子科学平台积极面向国内外研究机构用户开放,支撑了荷兰代尔夫特理工大学、北京大学、清华大学、中国科学院等国内外用户单位百余家实验课题研究,在国际科技前沿和国家重大需求方面,取得了一系列重要科技成果。