《上海硅酸盐所在铁电材料能带调控及光热释电研究方面取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2023-11-27
  •     铁电材料因存在自发极化,可以将光信号转换为电信号,其主要通过两种方式实现,即体光伏效应和光诱导热释电效应。铁电材料的光伏效应在理论上被认为可以超过 p-n 结太阳能电池的 Shockley-Queisser 极限,光热释电效应则不受光波长的限制,可以响应到红外波段,两者及其耦合效应 在光电探测等领域具有很好的应用前景。但是铁电材料的宽带隙和低热释电系数限制了其光伏响应和热释电响应。窄化带隙不仅有利于提高光伏响应,而且可以提高光热转化效率,进而提高光热释电响应。然而带隙窄化往往使铁电性恶化,与高热释电系数要求的大极化和极性变化相矛盾,因此寻找合适的策略获得具有窄带隙,高铁电性、高热释电系数的铁电材料对于提高铁电材料光电性能具有重要意义。
        中国科学院上海硅酸盐研究所易志国研究员团队在兼具窄带隙、大铁电极化和高热释电系数的铁电材料研究中取得新进展。通过在 BaTiO3基铁电陶瓷中掺杂 Mn 元素,制备了 0.5Ba(Zr0.2- x Ti0.8Mn x )O3-0.5(Ba0.7Ca0.3)TiO3(BZTM x -BCT) 铁电陶瓷。掺杂之后 BZT-BCT 带隙从 3.2 eV 降低到 1.9 eV ,而且由于 Mn 3d 轨道能级劈裂在带隙中引入了亚带隙,最低达 1.2 eV 。此外,因为 Mn3+的 Jahn-Teller 效应和 Mn3+-VO缺陷对增加了体系不对称性和限制了氧空位的移动,铁电性仍然保持在纯 BZT-BCT 的 76% 以上。光电测试表明, Mn 掺杂之后 BZT-BCT 的光伏响应和光 - 热释电响应均提升了约一个数量级,热释电响应增强更加明显。一方面,带隙窄化后,更多的载流子弛豫至导带底和价带顶,或者因为 BZTM x -BCT 中高密度的点缺陷复合,更多的热量释放,导致 BZT-BCT 光热转换能力提升;另一方面, Mn 掺杂后 BZT-BCT 的相转变温度降低以及准同型相界( MPB )的存在,导致热释电系数提高,两者共同作用最终促进了光热释电响应的提升。将研制的 Mn 掺杂 BZT-BCT 铁电陶瓷用于红外辐射探测,发现对人体红外信号具有优异的识别能力。
        相关研究成果以“ Bandgap engineering of BZT-BCT by Mn doping and the emerging strong photo-pyroelectric effect ”为题发表在 Nano Energy ( 2023 , DOI : 10.1016/j.nanoen.2023.109081 )。论文第一作者为上海硅酸盐所博士研究生王路,指导教师为易志国研究员。该工作获得国家自然科学基金、上海市自然科学基金和中国科学院前沿科学重点项目等资助。
    链接: https://doi.org/10.1016/j.nanoen.2023.109081

  • 原文来源:https://www.sic.cas.cn/xwzx/kydt/202311/t20231124_6937453.html
相关报告
  • 《上海硅酸盐所在新型铁电陶瓷研究方面取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-05-28
    • 铁电陶瓷具有储能密度高、放电速度快、贮存性能稳定等特点,在近代科学和高新技术领域中具有重要应用。传统铁电材料中钙钛矿结构的锆钛酸铅(简称 PZT )系列是应用面最广的铁电材料,也是目前国际上公认的、实现能量存储和爆电换能的理想材料。但是,随着新技术对高性能铁电材料需求的增加和环境友好型社会的发展,探索新型无铅铁电材料体系变得越来越迫切。 近日,中国科学院上海硅酸盐研究所董显林研究员和王根水研究员带领的研究团队发现了一种新型、高性能、无铅铁电材料 ( Ag 0.935 K 0.065 ) NbO 3 ( AKN ),该材料比目前所用的含铅铁电陶瓷具有更高的能量存储密度和更好的温度稳定性,可用于能量存储和爆电换能。该项工作提供了一种环境友好的铁电陶瓷材料,相关研究成果发表在 Science Advances 上,论文第一作者为中国科学院上海硅酸盐研究所与澳大利亚国立大学联合培养博士生刘振,王根水研究员和刘芸教授为文章共同通讯作者,上海硅酸盐所为论文第一单位。 新材料的设计采用 AgNbO 3 ( AN )作为反铁电相, KNbO 3 ( KN )作为铁电相构筑铁电 —— 反铁电相界,通过改变铁电相 KN 的含量实现 AKN 铁电陶瓷性能和相变压力的调控。与传统 PZT 系列铁电陶瓷相比, AKN 铁电陶瓷具有更优异的储能密度和温度稳定性,使其在能量存储和爆电换能应用中具有更优异的综合性能。通过与澳大利亚国立大学刘芸教授的团队和美国宾夕法尼亚州立大学陈龙庆教授的团队合作,结合透射电镜分析、压力条件下原位中子衍射分析和唯象理论计算,揭示了 AKN 铁电陶瓷爆电换能行为的物理机制为压力诱导的氧八面体旋转从 a-a-c+ 型 转变为 a-a-c-/a-a-c+ 型 ,这与压力诱导的、不可逆的铁电 - 反铁电相变有关。 以上研究工作得到国家自然科学基金面上项目、中国科学院仪器研制项目、中国科学院青促会和上海市扬帆计划等项目的资助。
  • 《上海硅酸盐所在无机生物材料用于皮肤创伤修复方面取得系列重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-11-08
    • 近年来,各种皮肤癌、糖尿病发病率逐年升高,这些疾病导致的皮肤创伤的修复与再生面临着巨大的挑战。对于皮肤癌,目前临床上最常采用的治疗方式为外科手术切除。然而,手术很难完全清除肿瘤细胞,需要配合化疗、放疗等手段辅助治疗以防止癌症复发,但其不足之处是存在较大的毒副作用。同时,在手术切除病变组织后,在肿瘤部位会造成大面积皮肤缺损,机体很难自愈。针对该问题,中国科学院上海硅酸盐研究所吴成铁研究员与常江研究员带领的研究团队提出将光热疗法与皮肤组织工程结合的思想,设计了一种双功能软组织工程材料,并与华东师范大学合作证实该材料具有达到治疗浅表层肿瘤和修复创面的理想效果,取得了重要进展。同时,该团队还利用生物活性无机颗粒、生物活性陶瓷与高分子复合,在修复由糖尿病创伤引起的创面方面也取得了重要进展。   该团队通过采用水热法合成出硫化亚铜(Cu2S)纳米花,并采用图案化静电纺丝共纺的方式,将硫化亚铜纳米颗粒均匀地纺入至生物高分子纤维(PLA/PCL)内部,赋予微图案复合纤维膜(CS-PLA/PCL)在低功率近红外光照射下即可迅速升温的特性,同时引入具有诱导血管再生功能的治疗性铜离子。这种制备方式简单易行,既使不同含量的硫化亚铜复合膜能保持其整齐有序的大孔结构(300 μm),又能对支架的光热性能进行有效调控,以实现高效杀死皮肤肿瘤细胞的功效。在体内肿瘤治疗实验中,将硫化亚铜复合膜直接贴附于黑色素瘤引起的创伤部位,在治疗早期利用近红外照射复合纤维膜,引起肿瘤处局部过高热,有效抑制了黑色素瘤的增长。在治疗后期停止激光照射,发现肿瘤不仅没有复发,原有的创口还逐渐愈合,而对照组的伤口却随着肿瘤不受抑制的增长逐渐扩大。体内慢性创面修复实验证实,该硫化亚铜复合膜本身具有促进伤口部位血管形成的作用,进而显著提高了皮肤创面的愈合速度。该研究为浅表层肿瘤的治疗提供了一种简单有效的新理念,在临床转化上具有广阔的应用前景。该研究成果被美国化学会(ACS)出版集团的国际权威学术期刊ACS Nano(DOI: 10.1021/acsnano.7b05858)在线发表(论文第一作者为上海硅酸盐所在读博士生王小成,指导导师为吴成铁研究员)。   该团队还通过改进化学软模板法制备介孔氧化硅微球的过程,在体系中原位引入少量的铕(Eu)元素,制备出一系列具有梯度含铕量的介孔微球材料(Eu-MSNs)。合成的颗粒直径分布在280-300 nm,比表面介于820-1040 m2/g之间。铕元素的引入赋予了材料合适的免疫微环境,并激活血管内皮生长因子(VEGF)信号通路,提高脐静脉血管内皮细胞中成血管相关受体因子的表达水平,显示其细胞水平良好的成骨和成血管的作用。在慢性糖尿病皮肤创面愈合实验中展现出良好的修复效果。相关研究结果发表在《生物材料》(Biomaterials, 2017;144: 176-187). (论文第一作者为上海硅酸盐所2017届博士毕业生施孟超,指导导师为吴成铁研究员)。   该团队还采用静电纺丝共纺的方式,将生物陶瓷磷酸二正硅酸钙颗粒纺入生物高分子纤维膜内部,制备出生物可降解的无机/有机纳米复合纤维膜材料(Acta Biomaterialia 2017;60:128-143),采用激光脉冲方法将生物活性陶瓷活性组成沉积在鸡蛋膜表面,形成纳米生物活性玻璃层(Acta Biomaterialia 2016;36:254-266),结果表明该生物活性陶瓷和生物活性玻璃材料能够显著缩短软组织慢性伤口尤其是糖尿病创伤的愈合时间,促进创伤区域的血管新生、表皮再生和胶原形成,且减少慢性伤口处炎症反应。这些研究扩展了传统生物陶瓷材料的应用范围,在软组织创伤修复应用领域具有良好的临床转化前景。   相关研究工作得到了中组部青年相关人才计划与科技部重点研发计划支持。论文链接:   http://pubs.acs.org/doi/10.1021/acsnano.7b05858;   http://www.sciencedirect.com/science/article/pii/S0142961217305379;   http://www.sciencedirect.com/science/article/pii/S1742706117304579;   http://www.sciencedirect.com/science/article/pii/S1742706116300952.