传统单结太阳电池由于固有的禁带宽度,受到肖克利•奎伊瑟效率极限制约,光电转换效率极限值只能达到29.4%,无法突破30%效率大关,而串联结构太阳电池(双结或者多结)为科学家提供了突破极限效率的可能。加州大学洛杉矶分校Yang Yang教授课题组联合日本厚木研究中心设计开发了全新的双端串联钙钛矿(perovskite)/铜铟镓硒(CIGS)太阳电池,光电转换效率高达22.43%,创下该类型电池的效率记录。研究人员首先制备了禁带宽度为1 eV(意味着其吸收的太阳光的波段大于700 nm)的CIGS电池,随后在其表面依次沉积一层硼掺杂的氧化锌(BZO)和铟掺杂的氧化锡(ITO)薄膜作为中间层,接着采用化学机械抛光工艺对ITO进行打磨抛光以降低其表面粗糙度(从250 nm减少至40 nm),提升平整度为后续,以为顶部的钙钛矿电池制备提供良好的中间界面层,减少接触电阻。此外,由于BZO的功函数较电子传输层聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)低,直接接触会形成势垒阻碍空穴传输;而引入ITO可以有效地克服这一问题,可以与PTAA形成良好的欧姆接触。接着通过旋涂退火的方法制备了半透明的倒置平面结构的钙钛矿电池,紫外可见光谱显示钙钛矿电池在770-1300 nm的波长区域的透射率超过了80%,表明了大部分的长波段光可以穿过钙钛矿电池层,而这区域的波段恰好是CIGS电池吸收的波段。因此,将钙钛矿作为顶电池与CIGS底电池采用双端串联形成叠层结构,在一个标准太阳光照射下(受照面积为0.042 cm2),串联电池的短路电流、开路电压和填充因子分别为 17.3 mA/cm2、1.774 V和73.1%,因此获得了高达22.43%的光电转换效率,创造了perovskite/CIGS双结太阳电池效率新高,且获得了权威机构认证收录到美国国家可再生能源实验室的效率表中。更为关键的是,在室温环境下连续辐照500小时后,未封装的串联电池仍可维持初始效率的88%以上,而放置于黑暗环境12小时后,电池效率又可以回涨到初始值的93%,即串联电池展现出优异的稳定性。而电池良好的稳定性主要是得益于钙钛矿顶电池表面的金属氧化物层有效阻隔了环境中空气和水分对钙钛矿薄膜的侵蚀。此外,顶电池平面型钙钛矿很容易通过氯苯洗去,而CIGS底电池性能不受影响可以重复使用,减少浪费提升环保性。该项研究通过构造新型架构的钙钛矿/铜铟镓硒双结太阳电池,不仅获得高效率还增强了电池稳定性和环保性,为进一步提升太阳能电池发电效率降低成本提供了新思路。相关研究成果发表在《Science》。