《为什么冬季新冠猖獗?科学家揭露首个生物学机制!》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-12-29
  • 随着各地逐渐入冬成功,身边人打喷嚏、流鼻涕的频率增加了,就好像感冒和流感与冬季存在着某种密不可分的联系一般。细想一下,好像的确在天气寒冷的时间段更容易患上感冒、流感,甚至新冠病毒在冬季也会愈发猖獗,但迄今为止仍然没有发现明确的机制,这是为什么呢?

    近日在《过敏与临床免疫学杂志》上刊登的一项研究成果便解答了这一疑惑。研究发现将鼻腔内的温度降低5℃会显著降低鼻内细胞外囊泡的活性。换言之,冷空气的存在损害了发生在鼻子里的免疫反应,使得病毒和细菌有机可乘,人体出现上呼吸道感染概率大幅度增加。此外,在这项研究成果中,研究者提供了第一个生物学机制来解释这一现象的发生。

    鼻腔是第一道防线

    在人鼻黏膜上皮原代细胞(原代HNEpC)中开展体外实验,采用TLR3典型激动剂Poly(I:C)刺激细胞,发现poly(I:C)能够刺激鼻上皮EV分泌,分泌量随着时间延长、剂量增加而增加,且不存在细胞毒性。

    确认刺激有效后,随之采用TLR3/dsRNA复合物抑制剂或(和)IRF3激动剂KIN1148验证了这种效应是通过激活TLR3-IRF3信号轴介导的。之后,研究者将TLR3刺激的EV与未刺激的对照EV进行比较,证实二者特征没有显著差异。最后,研究者探讨了TLR3刺激EV在原代HNEpC中的上皮间转运动力学,发现37℃时,细胞摄取迅速,且在60分钟内逐渐扩散到整个细胞质中。然而在氯丙嗪预处理、4℃低温环境下,细胞摄取显著抑制了87.5%,扩散速度显著减慢。表明低温对于细胞摄取EV存在明显抑制作用。

    TLR3刺激的EV表现出有效的抗呼吸道病毒活性

    明确TLR3刺激显着增加鼻上皮EV分泌后,接下来分析这些EV是否具有内在的抗病毒活性。研究者采用冠状病毒CoV_OC43、次要群鼻病毒RV-1B和主要群鼻病毒RV-16分别在原代HNEpC中构建上呼吸道病原体模型,发现原代HNEpC普遍出现细胞质的空泡化、变圆和脱落,并通过病毒dsRNA检测表明已成功诱导细胞病变效应和宿主细胞免疫应答,证实模型成功。

    之后评估TLR3刺激的EV介导的体外抗病毒活性,发现TLR3刺激可能会改变EV中的因子物质并赋予EV增强的抗病毒特性。

    TLR3刺激上调EV中的miR-17增强抗病毒活性

    明确TLR3刺激的EV有抗病毒活性后,研究者进一步探索了潜在的抗病毒机制,通过层次聚类分析、火山图数据分析,最终发现6个在TLR3刺激后显著上调并与抗病毒作用相关的miRNA,其中将已被报道在上呼吸感染期间抑制病毒复制的miR-17作为待验证的作用机制目标。

    采用qPCR证实与未受刺激对照细胞相比,TLR3刺激显着增加了EV中miR-17的表达;在未受刺激对照细胞中,miR-17过表达或沉默发现miR-17抑制了病毒RNA复制,显著降低了宿主细胞中CoV_OC43、RV-1B和RV-16病毒mRNA水平,证实了miR-17对呼吸道病毒的强大抗病毒活性。在TLR3刺激的细胞中,同样进行miR-17过表达或沉默,发现与未受刺激对照细胞相比,TLR3刺激诱导的EV中miR-17抗病毒活性更强,证实TLR3刺激上调EV中的miR-17增强抗病毒活性。

    TLR3刺激的EV表面受体-病毒结合

    有助于抗病毒活性并防止病毒进入宿主细胞

    研究者发现TLR3刺激的EV表面受体蛋白质可以与病毒相结合,阻止病毒进入细胞,与细胞受体结合,而未受刺激的对照EV对阻断病毒感染没有显著影响。

    研究者分析了TLR3刺激的EV中LDLR,ICAM-1和N-乙酰神经氨酸(NANA)的水平,它们分别参与受体介导的RV-1B,RV-16和CoV_OC43的内吞作用,发现TLR3刺激上调EV中的LDLR和ICAM-1水平,另外因技术限制,NANA无法检测。

    为了探索LDLR和ICAM-1在EV中抑制病毒感染的作用,在TLR3刺激的EV中沉默LDLR或ICAM-1 mRNA表达,发现LDLR或ICAM-1沉默回削弱对应的病毒与TLR3刺激的EV之间的相互作用,从而促进病毒进入宿主细胞。

    冷暴露会损害TLR3依赖性EV分泌和miR-17丰度

    从而消除抗病毒活性

    研究者分析了降温对TLR3依赖性EV功能的影响。通过人体鼻内温度梯度试验发现当环境温度从23.3℃降低到4.4℃后,前鼻甲和中下鼻甲水平的鼻内温度分别下降了6.4℃和4.7℃。基于上述实验结果,在体外培养实验时采用降低5℃的方法,发现在37℃时,TLR3依赖性EV分泌显着增加,而32℃时,则显著损害了TLR3依赖性EV分泌。

    接下来研究冷暴露对TLR3刺激的EV介导的抗病毒活性的影响,发现冷暴露下TLR3依赖性EV抗病毒活性降低,miR-17的丰度降低,表明冷暴露可能通过这种机制来消除抗病毒活性。

    冷暴露降低TLR3依赖性EV表面受体蛋白表达,损害由表面受体-病毒相互作用介导的抗病毒活性

    在37℃时,与未刺激对照细胞相比,TLR3刺激EV中LDLR、ICAM-1表达显著增加,而当温度降到32℃时,TLR3刺激EV中LDLR、ICAM-1显著受损,表明TLR3刺激EV中表面受体蛋白LDLR和ICAM-1表达增加受环境温度影响。进一步研究发现冷暴露会显著损害由表面受体-病毒相互作用介导的抗病毒活性,但是对于TLR3刺激的EV抗病毒活性没有显著影响。

    小结

    上呼吸道感染存在季节性变化,尤其在冬季,感染率增加,这是因为冷暴露会损害由鼻上皮EV介导的抗病毒免疫防御功能,且这可能是通过下调TLR3依赖性EV分泌和miR-17丰度,降低TLR3依赖性EV表面受体蛋白表达等来实现的。

    想一想,新冠的到来使得我们离不开口罩,而口罩的存在可以给予鼻腔一定的温暖,间接保护了鼻内免疫防御机制,降低了呼吸道病毒的感染几率,也不失为又一个戴口罩的理由。

    参考文献:

    [1] Di Huang, Maie S. Taha, Angela L. Nocera, Alan D. Workman, Mansoor M. Amiji, Benjamin S. Bleier,Cold exposure impairs extracellular vesicle swarm–mediated nasal antiviral immunity,

    Journal of Allergy and Clinical Immunology,2022. doi.org/10.1016/j.jaci.2022.09.03

  • 原文来源:https://news.bioon.com/article/eabde5390792.html
相关报告
  • 《为什么碳回收可能是合成生物学的最高成就》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-07-01
    • 地球正在升温。 去年,37.1千兆吨的二氧化碳被释放到大气中。每秒产生240万磅(或110万公斤)。虽然二氧化碳的升温潜能远远超过甲烷和碳氟化合物衍生物等其他化合物,但排放的碳量仍然令人不安。 偶然,碳也是生物学的关键。将简单的碳分子(如二氧化碳)转化为多碳化合物是生命,新陈代谢和进化的核心。在工业中,排放的碳气也可用于生产化学产品,而不是来自化石燃料和精炼石油。 然而,碳固定并不容易,解决这个问题需要大量投资,密集的生物学研究和创新方法。例如,低大气浓度的温室气体使它们极难捕获和再循环。二氧化碳在大气中仅占大约百万分之405,甲烷占百万分之二。 尽管大气中温室气体浓度较低,但自养生物 - 如漂浮在世界海洋中的大片蓝藻 - 可以利用阳光有效地将二氧化碳转化为食物和氧气。然而,固定碳的天然代谢途径通常依赖于缓慢或低效的酶,如RuBisCO。此外,生物学家对即使是最简单的生物体的基因和相互作用的蛋白质网络也有不完全的理解,混淆了我们重新接触新陈代谢以增强碳固定的能力。 尽管存在这些障碍,但仍然不能持续依赖石化产品,迫切需要一种通往碳基产品的新途径。合成生物学在这里有所帮助。 带垃圾,带现金 许多公司已经开始通过重新布线微生物代谢来将温室气体转化为生物燃料和塑料。几乎在所有情况下,工厂或垃圾填埋场排放的“废物”气体都被用作碳源。 总部位于伊利诺伊州Skokie的LanzaTech将工厂排放的废弃一氧化碳转化为乙醇,很快将其他化学品转化为乙醇。 SynBioBeta的撰稿人EmiliaDíaz之前曾撰写有关LanzaTech快速增长和基因工程套件的文章。 LanzaTech已经在商业规模生产乙醇超过一年,在中国运营的气体发酵设施和加利福尼亚州,比利时,印度和南非正在建设的其他设施。他们每年将通过碳废物生产约7700万加仑的乙醇。 根据LanzaTech的首席科学官兼联合创始人Sean Simpson博士的说法,工程微生物特别适合碳转化,因为“化学方法需要非常固定比例的气流,因此[碳源]不仅必须非常固定,但也要确定对所需产品的选择性。“ 基本上,在生物学进入聚光灯之前,碳废物排放的不可预测性是一个问题。 “有了生物学,你就拥有了一种能够吸收高度可变入口气体的催化剂,这是你从生物质废物或工业过程产生的废物流中获得的......并且可以将可变气体转化为高产量的单一产品选择性,“辛普森说。 但工厂排放并不是合成生物学公司旨在获取利润的唯一可行的碳源。其他人正在从农场和垃圾填埋场吸收碳并用它来制造燃料或塑料。 几乎所有地球上的塑料都是用石油制成的,但总部位于加利福尼亚的Newlight Technologies公司旨在改变这一点。他们使用垃圾填埋场甲烷生产一种名为AirCarbon的塑料。该方法包括将甲烷与空气混合并将其转化为液体,然后将其加入微生物中。微生物产生的生物聚合物可以熔化以制造塑料产品,包括手机壳和椅子。 近年来,Newlight与包括宜家和维玛在内的大型塑料经销商合作,并宣布了快速扩大生产规模的计划。由于Newlight希望减少碳排放,同时提供更环保的塑料替代品,因此正在建设年产量达3亿和6亿磅的生产设施。 尽管人们对碳回收持续存在兴趣,但仍有许多障碍需要克服。工业界越来越多地建立学术伙伴关系,以追求冒险的想法,并开发出现成的碳回收解决方案。 学术界推动碳回收 为巩固学术关系,一些公司在财务上支持合成生物学的学术研究。 Ingenza和Sasol UK之前与Dundee大学的Frank Sargent教授合作开发了一种捕获和回收废二氧化碳的方法。发表在Current Biology上的合作结果表明,大肠杆菌可以将100%的气态CO2转化为甲酸,并使用一种叫做甲酸氢化酶或FHL的酶。 现在,Ingenza正在推动该项目的发展,旨在利用该技术捕获和回收发酵过程中的碳废物,同时生产化学品。 Ingenza已经成功地利用发酵,蛋白质工程和合成生物学来设计细胞,用于大规模生产抗生素和化学品以保护作物。 但要应对像全球碳排放这样巨大的挑战 - 并在减少它们方面做出真正的努力 - 学术界必须超越模式生物,如大肠杆菌,寻求答案。 伦敦帝国理工学院代谢工程小组组长Patrik Jones博士知道,天然碳固定过程存在严重的局限性,但他们相信合成生物学可以产生相当大的影响,并且可以更好地理解生物学。他的团队的目标是开发“可以增强人类活动可持续性的全新概念”。 通过研究和设计自养生物,特别是最初在淡水池中发现的蓝藻菌株,琼斯集团已经成功地从光合作用中生产出脂肪酸,醇,烷烃和烯烃。他们还“挖掘”了这种蓝细菌的基因组,以更好地了解其代谢网络。尽管做了这些努力,生物学并不容易揭示它的秘密,并且生物体并不总是适合遗传“重新布线”。 琼斯表示,“我们在扩大工程自养系统方面面临着重大挑战,但最近我觉得我们正在逐步集体,在解决一些关键挑战方面取得进展,例如污染和遗传稳定性。”琼斯还解释说为了改善碳固定以改善人类活动,科学家们首先要弄清楚如何提高碳固定的总体速度。 位于德国马尔堡郊区的另一个学术实验室旨在实现这一目标。 “从生物化学的角度来看,RuBisCO已发展到一定的最佳状态,但它不能再进一步发展,”马克斯普朗克陆地微生物研究所所长Tobias Erb教授说。 “RuBisCO可以修复二氧化碳,它可以很快,但会产生很多错误,或者它可以准确,但效果很慢,”Erb说。尽管RuBisCO在植物和许多光合生物中无处不在,但它作为一种酶有点令人失望。它经常“错误地”与氧气结合,而不是二氧化碳,这会降低其效率。 然而,Erb看到了自然界的潜力,并认为合成生物学可用于改善像RuBisCO这样的酶。 “我们希望从大自然中学习,然后运用知识开发解决方案,”Erb说,他的实验室以挖掘生物基因组和开发新酶以克服碳固定限制而闻名。 2016年,Erb的研究小组发表了第一个用于体外固定二氧化碳的全合成代谢途径。合成途径称为CETCH,由来自9种不同生物的17种不同酶组成,包括3种工程酶。值得注意的是,它比一些天然碳固定途径的效率提高了五倍,并且对氧气完全不敏感。 虽然将这种途径整合到活细胞中更具挑战性,但Erb认为,随着技术的进一步发展,合成碳固定途径有朝一日可能会在体内实施。 凭借自然界的灵感,合成生物学为碳回收提供解决方案。但是工作还有待完成,未来将建立在生物学的支柱上,而不是机会。 生物学理解是未来的支柱 随着科学家们探索分子世界以寻找巨大问题的答案,生物学仍然不愿意分享它的秘密。琼斯知道还有很多基础工作,合成生物学尚不清楚。 “总的来说,我们的主要限制是理解。生物学很复杂,虽然我们认为我们了解大多数基因在模式生物体中的作用,但这仍然让我们面临着理解他们共同贡献的网络的挑战,“他说。 然而,随着LanzaTech,Newlight和Ingenza等公司将碳回收规模扩大,Jones和Erb等学者在开发新的合成生物工具方面向前推进,碳排放量可能会大幅减少。 在许多方面,人类碳排放是地球有史以来面临的最大挑战。减少我们足迹的解决方案将是合成生物学的最高成就。 ——文章发布于2019年6月25日
  • 《我国科学家从结构上揭示瑞德西韦抑制新冠病毒RNA依赖性RNA聚合酶机制 》

    • 来源专题:中国科学院病毒学领域知识资源中心
    • 编译者:malili
    • 发布时间:2020-05-25
    • 2020年5月23日讯/生物谷BIOON/---由SARS-CoV-2病毒引起的COVID-19大流行已成为一场人道主义危机,截至2020年4月8日报告的感染人数超过150万,死亡人数超过8.7万,到2020年4月27日已迅速增加到感染人数超过299万和死亡人数20.7万。SARS-CoV-2与严重急性呼吸综合征冠状病毒(SARS-CoV)和β冠状病毒家族中的几个成员(包括蝙蝠冠状病毒和穿山甲冠状病毒)密切相关。可能是由于SARS-CoV-2病毒刺突蛋白与宿主受体的结合亲和力较强,SARS-CoV-2在人与人之间的传播率要高得多,从而导致全球范围内的感染。 SARS-CoV-2是一种正链RNA病毒。它的复制是由病毒非结构蛋白(nsp)的多亚基复制/转录复合物介导的。这种复合物的核心成分是RNA依赖性RNA聚合酶(RdRp)的催化亚基(nsp12)。nsp12本身几乎没有什么活性,其功能需要包括nsp7和nsp8在内的辅助因子,这些辅助因子可以增加RdRp的模板结合和持续合成能力。RdRp也被提出是一类称为核苷酸类似物的抗病毒药物---包括瑞德西韦(remdesivir, 也称为GS-5734)---的靶点,其中瑞德西韦是一种前体药物,在细胞内可转化为三磷酸形式的活性药物。因此,RdRp一直是结构生物学研究的重点。科学家们已解析出nsp7、nsp8以及nsp12-nsp7-nsp8复合物的结构,并提供了RdRp复合物的整体结构。然而,由于没有SARS-CoV-2 RdRp与RNA模板或核苷酸抑制剂所形成的复合物的结构,药物发现工作受到阻碍。 在一项新的研究中,来自中国科学院、浙江大学、清华大学、北京协和医院、无锡佰翱得生物科学有限公司、上海交通大学和浙江省免疫与炎症疾病重点实验室的研究人员解析出SARS-CoV-2 RdRp复合物在apo形式(apo form)下以及与模板-引物RNA和抗病毒药物瑞德西韦(Remdesivir)结合在一起时的两种低温电镜结构。相关研究结果近期发表在Science期刊上,论文标题为“Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir”。 为了开展低温电镜研究,这些研究人员将nsp12与nsp7和nsp8在昆虫细胞中共表达,从而形成核心RdRp复合物(图1A)。nsp7和nsp8的化学计量比似乎小于nsp12,因此,在最后的纯化步骤之前,补充了额外的细菌表达的nsp7和nsp8,以提高异源三聚体复合物的产量。纯化的nsp12在与长50个碱基的部分双链模板-引物RNA的结合上表现出很小的活性(图1B),这与SARS-CoV的nsp12相类似。nsp7和nsp8的存在显著增加了nsp12与模板-引物RNA的结合。在加入三磷酸腺苷(ATP)后,nsp12-nsp7-nsp8复合物在聚尿嘧啶模板上也表现出RNA聚合活性(图1,B和C)。这种RNA聚合活性可被加入的瑞德西韦的活性三磷酸形式(triphosphate form of Remdesivir, RTP)有效抑制(图1D)。即使在10 mM ATP的存在下,1 mM RTP也完全抑制了RdRp的聚合活性。相比之下,作为一种前体药物,瑞德西韦在5 mM浓度下,对这种纯化的RdRp酶的聚合活性没有任何抑制作用,瑞德西韦的单磷酸形式(Remdesivir in its monophosphate form, RMP)也没有这种抑制能力。 图1.nsp12-nsp-7-nsp8 RdRp活性复合物的组装以及瑞德西韦对它的抑制作用。 纯化的RdRp复合物在53℃的解链温度下相对稳定。nsp12-nsp7-nsp8复合物的阴性染色电镜可视化观察显示出具有良好均匀性的分散颗粒。对于apo形式下的nsp12-nsp7-nsp8复合物,这些研究人员在洗涤剂DDM的存在下,对这种复合物样本进行了玻璃化处理。对图像处理的初步尝试显示,这些颗粒是优先取向的。因此,他们收集了超过570万个颗粒的7400多个显微影像,以增加非优先取向的投影数量。其中,81494个颗粒被用于产生2.8埃分辨率的密度图。 nsp12-nsp7-nsp8与模板-引物RNA和RTP结合在一起(称为template-RTP RdRp复合物)时的低温电镜研究面临两个挑战。首先,大多数颗粒被吸附到低温电镜网栅条上,而不是停留在玻璃态冰中。其次,在低温电镜样本制备的条件下,RNA双链可能从template-RTP RdRp复合物中解离下来。最终,这些研究人员制备出15mg/ml的template-RTP RdRp复合物样本用于低温电镜实验,这一浓度远高于可溶性蛋白复合物在低温电镜研究时所使用的正常浓度。这种template-RTP RdRp复合物的高浓度具有质量作用效应,以稳定这种RNA-蛋白复合物,并且让过量的template-RTP RdRp复合物逃避低温电镜网栅条的吸收,从而进入玻璃态冰中。他们收集了2886个显微影像,从而利用130386个颗粒投影产生了2.5埃分辨率的结构。由于这种解析出的结构的相对较高的分辨率,这种低温电镜图清晰地显示了这种复合物的关键结构特征。 RdRp复合物在apo形式下的结构包含一个nsp12、一个nsp7和两个nsp8,整体排列与SARS-CoV和最近解析出的SARS-CoV-2中的结构相类似(图2,A和B)。与SARS-CoV RdRp结构不同但与最近解析出的SARS-CoV-2 RdRp结构相似的是,这种结构显示nsp12还包含一个N末端的β-发夹(残基31~50)和一个延伸的套病毒RdRp相关核苷酰转移酶结构域(NiRAN,残基115-250),此外还有7个螺旋和3个β链。在NiRAN结构域之后是一个由3个螺旋和5个β链组成的界面结构域(残基251-365),该界面结构域与RdRp结构域(残基366-920)相连(图1A和2B)。nsp12的RdRp结构域显示出典型的杯状右手构象,手指亚结构域(残基397-581和残基621-679)与拇指亚结构域(残基819-920)形成一个封闭的环形结构(图2,A和B)。这种封闭构象通过nsp7和nsp8的结合而变得稳定,其中一个nsp8分子位于手指亚结构域的顶部,并与界面结构域相互作用。nsp12的封闭构象可通过nsp7-nsp8异源二聚体进一步稳定化,这种异源二聚体沿着拇指-手指亚结构域界面堆积(图2,A和B)。此外,这些研究人员能够在由H295-C301-C306-C310和C487-H642-C645-C646组成的保守性金属结合基序中配位两个锌离子(图2C),这一点在SARS-CoV RdRp结构中也能观察到。这些锌离子很可能是维护RdRp结构完整性的保守结构成分。 图2.apo形式下的nsp12-nsp-7-nsp8 RdRp复合物的低温电镜结构。 template-RTP RdRp复合物的结构包含一个nsp12、一个nsp7和一个nsp8(图3,A和B)。第二个nsp8在template-RTP复合物的低温电镜图中基本看不到,因此没有包含在最终的结构模型中。此外,template-RTP RdRp结构含有位于模板链中的长14个碱基的RNA,位于引物链中的长11个碱基的RNA、与引物链共价连接在一起的抑制剂RMP(图3,C和D),以及一个焦磷酸和三个镁离子,这些镁离子可能作为活性位点附近的催化离子(图3D)。 图3.RdRp复合物与瑞德西韦与RNA结合在一起时的低温电镜结构。 template-RTP RdRp复合物的整体结构与apo形式下的RdRp结构相似,nsp12处于封闭构象(图2A和3A)。由来自模板-引物RNA的11个碱基对形成的双链RNA螺旋(图3C和4,A至E),由手指-手掌-拇指亚结构域握着。在模板-引物RNA和nsp12之间观察到广泛的蛋白-RNA相互作用,共有29个来自nsp12的残基直接参与RNA的结合(图4E)。令人惊讶的是,尽管nsp7和nsp8这两种蛋白是RdRp结合RNA所需要的,但是它们并不介导RNA相互作用。大多数蛋白-RNA相互作用涉及RNA磷酸-核糖骨架,许多相互作用直接发生在2′-OH基团上(图4E),从而为区分RNA与DNA提供了基础。nsp12与模板-引物RNA的任何碱基对都没有接触,这表明序列独立于DNA的生物碱基对。nsp12与模板-引物RNA的任何碱基对都没有接触,这表明RdRp与RNA的结合与序列无关。这与RdRp在延伸阶段的酶活性不需要特定的序列这一事实是一致的。 位于引物链的3′端是RMP(图3D和图4,D和E),RMP在+1位点共价整合到引物链上(图4E)。在模板链的+2和+3位点上的核苷酸与来自手指亚结构域背面的残基相互作用(图4,A和B)。尽管在复合物组装中存在过量的RTP,但从这种复合物结构中观察到,只有单一的RMP被组装到引物链上。因此,瑞德西韦和许多核苷酸类似物前体药物一样,通过非专一性RNA链终止机制抑制病毒RdRp活性,这一机制需要瑞德西韦转化为它的活性三磷酸形式。 图4.RdRp复合体识别RNA。 RMP的结合位置位于催化活性位点的中心(图3D)。作为一种单磷酸腺苷类似物,RMP与来自引物链的上游碱基形成碱基堆积相互作用,并且与来自模板链的尿苷碱基形成两个氢键(图3D)。此外,RMP还与K545和R555的侧链发生相互作用。在结合的RMP附近有两个镁离子和一个焦磷酸。这两个镁离子与磷酸二酯骨架相互作用,它们是催化活性位点的一部分。焦磷酸位于活性位点的核苷酸进入通道的通道口,可能阻断核苷酸三磷酸进入活性侧(图3,C和D)。 nsp12 RdRp的催化活性位点由A到G的7个保守性基序构成(图1A和3E)。来自手掌亚结构域的基序ABCD和基序C中的SDD序列(残基759-761)形成催化活性中心(图3D)。D760和D761都参与了催化中心中的两个镁离子的配位。基序F和G位于手指亚结构域内,它们与模板链RNA相互作用,并引导该链进入活性位点(图3E)。基序F中与+1碱基相接触的K545和R555侧链与引物链RNA相互作用(图3D),从而将进入的核苷酸稳定在正确的位置上进行催化。模板-引物RNA在活性位点中的的定位类似于模板-引物RNA在脊髓灰质炎病毒RdRp延伸复合物和HCV NS5B RdRp抑制复合物中的定位。参与RNA结合的残基以及包含催化活性位点的残基都是高度保守的,这突出了RdRp在这些不同的RNA病毒中的保守性基因组复制机制,并表明有可能开发出广谱抗病毒抑制剂,如瑞德西韦和加利德韦(galidesivir, 也称为BCX4430)。 结构比较发现了apo形式下的RdRp复合物和template-RTP RdRp复合物结构之间的几个有趣的差异(图3,E和F)。首先,nsp7向RdRp核心移动了1.5埃(如nsp7残基F49所测得的那样),导致界面重排,结果就是复合物中第二个nsp8的结合力减弱。第二,连接拇指亚结构域的第一螺旋和第二螺旋的环状结构向外移动了2.8埃(如nsp12残基I847所测得的那样),以容纳双链RNA螺旋的结合(图3F)。第三,基序G残基K500和S501也向外移动2.0埃,以容纳模板链RNA的结合。除了这些变化之外,apo形式下的nsp12和template-RTP RdRp复合物中的nsp12非常相似:整个蛋白中所有Cα原子的均方根偏差(root mean square deviation, rmsd)为0.52埃。特别是构成催化活性位点的结构元素可以完全叠加(图3E),这表明SARS-CoV-2 RdRp是一种相对稳定的酶,当与RNA模板结合后,就可以发挥复制酶的功能。病毒RdRp是一种高度进行性的酶,其复制速度可达100个核苷酸/秒。apo形式下的结构和活性酶结构之间没有明显的构象变化,这与病毒RNA聚合酶的较高持续合成能力相一致,因而在复制周期中不需要消耗额外能量来导致活性位点发生构象变化。 除了瑞德西韦之外,一些核苷酸类似物药物,包括法匹拉韦(Favipavirir)、利巴韦林(Ribavirin)、加利德韦(galidesivir)和EIDD-2801,在细胞实验中有效地抑制SARS-CoV-2复制。与瑞德西韦一样,这些核苷酸类似物也被提出通过非专一性RNA链终止机制抑制病毒RdRp,这种机制需要前体化合物转化为它们的三磷酸活性形式。template-RTP RdRp复合物的结构提供了一个很好的模型来合理地思考这些药物如何抑制SARS-CoV-2 RdRp活性。特别是,EIDD-2801在阻断SARS-CoV-2复制方面比瑞德西韦强3~10倍。胞苷环外的N4羟基与K545的侧链形成一个额外的氢键,而胞苷碱基也与模板链上的鸟嘌呤碱基形成一个额外的氢键。这两个额外的氢键可能解释了EIDD-2801在抑制SARS-CoV-2复制方面具有明显更高的效力。 COVID-19大流行已经在全球范围内造成了情感上的痛苦和经济负担。对病毒生命周期至关重要的酶,因其与宿主蛋白不同,是很好的抗病毒药物靶点。在病毒酶中,RdRp是现有许多核苷酸类药物的主要靶点。在这篇论文中,这些研究人员报道了SARS-CoV-2 RdRp复合物的apo形式以及与模板-引物RNA和活性形式的雷德西韦结合在一起时的结构。这些结构揭示了模板-引物RNA是如何被这种酶识别的,以及瑞德西韦如何抑制链的延伸。结构比较和序列比对表明,RdRp识别底物RNA和瑞德西韦抑制RdRp的模式在不同的RNA病毒中高度保守,这为设计基于核苷酸类似物的广谱抗病毒药物提供了基础。此外,这些结构为现有的核苷酸类药物(包括强效的EIDD-2801)的建模和修饰提供了一个坚实的模板。总之,这些观察结果为设计更强效的抑制剂来对抗SARS-CoV-2的恶性感染提供了合理的基础。(生物谷 Bioon.com) 参考资料: Wanchao Yin et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, doi:10.1126/science.abc1560.