《日本研究人员开发出亚纳米颗粒制备方法 可制备稳定高效催化剂》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-09-29
  • 最近,由Takamasa Tsukamoto和Kimiisa Yamamoto领导的日本东京理工学院的研究人员开发了原子杂交法(atomhybridization method,AHM)制备高效稳定亚纳米颗粒(Sub-nanoparticles,SNPs)的技术。

    原子杂交法制备金、银、铜杂化SNPs流程图

    众所周知,纳米材料的小尺寸效应包括高反应活性、半导体特性等。亚纳米颗粒是指比纳米颗粒更小,粒径约1nm的粒子。作为工业反应所需的催化剂来说,它甚至有望超越纳米催化剂的能力。但很明显无法通过传统生产制备方式获得。日本研究人员开发的制备方法使用一种苯甲亚胺树状大分子的“大分子模板”精确控制snp的大小和组成,该成果发表在应用化学国际版,他们甚至更进一步开发出合金SNPs催化剂。

    a,合金SNPs催化烯烃生成过氧化氢b,催化活性受颗粒小型化和金属杂化影响

    “我们创造了单金属、双金属和三元金属snp(分别含有一种、两种或三种金属),它们都由铸币金属元素[铜、银和金]组成,并对每种snp进行了测试,看每种snp催化剂的性能如何。”研究负责人Tsukamoto介绍,他们通过测试烯烃催化反应能力得出结论:亚纳米催化剂比纳米催化剂更稳定,并且可以在常态(非高温高压)下表现出很高的催化性能;并且三元金属SNPs显示出更高的催化周转频率,说明金属杂化有利于提升催化剂活性。

相关报告
  • 《日本研究人员开发出亚纳米颗粒制备方法 可制备稳定高效催化剂》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-09-27
    • 由Takamasa Tsukamoto和Kimiisa Yamamoto领导的日本东京理工学院的研究人员开发了原子杂交法(atomhybridization method,AHM)制备高效稳定亚纳米颗粒(Sub-nanoparticles,SNPs)的技术。 原子杂交法制备金、银、铜杂化SNPs流程图 众所周知,纳米材料的小尺寸效应包括高反应活性、半导体特性等。亚纳米颗粒是指比纳米颗粒更小,粒径约1nm的粒子。作为工业反应所需的催化剂来说,它甚至有望超越纳米催化剂的能力。但很明显无法通过传统生产制备方式获得。日本研究人员开发的制备方法使用一种苯甲亚胺树状大分子的“大分子模板”精确控制snp的大小和组成,该成果发表在应用化学国际版,他们甚至更进一步开发出合金SNPs催化剂。 a,合金SNPs催化烯烃生成过氧化氢b,催化活性受颗粒小型化和金属杂化影响 “我们创造了单金属、双金属和三元金属snp(分别含有一种、两种或三种金属),它们都由铸币金属元素[铜、银和金]组成,并对每种snp进行了测试,看每种snp催化剂的性能如何。”研究负责人Tsukamoto介绍,他们通过测试烯烃催化反应能力得出结论:亚纳米催化剂比纳米催化剂更稳定,并且可以在常态(非高温高压)下表现出很高的催化性能;并且三元金属SNPs显示出更高的催化周转频率,说明金属杂化有利于提升催化剂活性。
  • 《青岛能源所开发出新型生物质基碳材料负载催化剂制备方法》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-07-27
    • 杂原子掺杂碳材料,由于其大比表面积、高孔隙、良好的电子传导性以及热、机械稳定性等特点,已被广泛应用于催化、能源、生命科学等领域。传统的制备方法往往都以不可再生碳源作为原料,制备过程一般要加入昂贵的模板、活化剂及杂原子源等。近年来,随着能源危机的日益凸显,以自然界中廉价易得、可再生的生物质为原料制备功能性生物质基碳材料受到科研工作者的日益关注。   自2017年以来,中国科学院青岛生物能源与过程研究所研究员杨勇带领的低碳催化转化研究组以竹笋为材料,通过简单水热碳化过程实现了N,O双杂原子掺杂的生物质碳材料的绿色制备。制备过程中以水为介质,无需添加活化剂和额外杂原子源,操作简便、绿色环保。所制得的碳材料比表面积高(>1000 m2g-1),孔容大(0.84 cm3g-1),N含量高(3.32 wt%),且具有多级孔(微-介-大孔)结构。同时,以该碳材料为载体,通过浸渍还原法制备出粒径分布均匀、高度分散负载金属Pd纳米结构催化剂Pd/N,O-Carbon,并应用于系列炔烃的官能团化转化反应。研究发现,碳结构中N原子的掺杂有效促进了金属Pd纳米颗粒在载体表面的分散和稳定,并在一定程度上调节金属Pd纳米颗粒的电子性能和与载体的相互作用。这种载体与金属纳米颗粒间的协同效应极大提高了该催化剂在炔烃高选择性转化及官能团化中的催化性能。相关研究结果分别申请专利一项并发表在ChemSusChem (2017, 10, 3427-3434); Catalysis Science & Technology (2018, 8, 1039-1050); Catalysis Today (2018, DOI: 10.1016/j.cattod.2018.04.036) 等国际期刊上。   从经济和可持续发展的角度出发,开发高活性高稳定性的廉价和储量丰富的非贵金属替代稀有贵金属催化剂,实现重要能源和化工过程的高效转化是目前催化科学研究的热点和挑战之一。在前期研究基础上,该研究组继续以竹笋和廉价、低毒的非贵金属钴盐为原料,通过优化和调控制备方法和策略,构建了一类新型杂原子(N,O,或P)掺杂的具有独特核壳结构的Co纳米颗粒催化剂。研究人员充分利用生物质竹笋本身富含的杂原子源(氨基酸、蛋白质等),在没有外加入模板和活化剂的条件下,开发了一条简单、绿色并可放大制备的生物质基碳材料负载Co纳米催化剂的制备方法。所制备的催化剂具有高比表面积、大孔容、分级孔等结构特点。   通过适当调变制备条件参数,研究人员分别制备杂原子掺杂碳层包埋钴纳米颗粒核壳结构催化剂(Core-Shell Co@NPC)和钴氧化物包裹金属Co纳米颗粒负载杂原子掺杂碳杂化材料催化剂(Core-Shell Co@CoOx/NC)(如图1所示)。两类纳米结构催化剂对芳硝基化合物直接加氢还原(以氢气为还原剂)或氢转移还原(以甲酸或甲酸铵为还原剂)合成苯胺类衍生物反应表现出优异的催化活性、化学选择性和宽广底物普适性。进一步研究发现,Co纳米颗粒催化剂也对硝基化合物一锅法还原胺化及甲酰化反应同样表现出优异的催化活性。所制得的芳香族胺类及衍生物在精细化工、药物化学及材料科学领域均具有广泛的应用(如图2所示)。此外,催化剂构效关系研究表明,生物质基碳材料结构中所“嵌入”的杂原子不仅可作为络合位点,同时又可作为活化底物位点,这种“协同”作用极大地改善了催化剂反应活性和稳定性。同时,该类催化剂具有一定的磁性特征,可利用外加磁场实现催化剂的简便分离回收和再利用。相关研究结果近期申请专利三项,并分别发表在Green Chemistry (2018, 20, 2821-2828),Green Chemistry (2018, DOI: 10.1039/C8GC01374H),Chemical Communications(2018, DOI: 10.1039/c8cc05285A)上。该研究工作不仅为硝基芳烃的还原转化提供一条绿色、温和的反应路线,也为生物质基碳材料负载非贵金属催化剂的设计与合成提供了新思路。   上述研究工作得到了青岛能源所启动资金的大力支持。   相关发表论文及链接:   1.Guijie. Ji, Yanan Duan, Saochun Zhang, Benhua Fei, Xiufang Chen, Yong Yang, Selective Semihydrogenation of Alkynes Catalyzed by Pd Nanoparticles Immobilized on Heteroatom- Doped Hierarchical Porous Carbon Derived from Bamboo Shoots, ChemSusChem 2017, 10, 3427-3434. (https://onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201701127)   2.Yanan Duan, Guijie Ji, Shaochun Zhang, Xiufang Chen, Yong Yang, Additive-modulated switchable reaction pathway in the addition of alkynes with organosilanes catalyzed by supported Pd nanoparticles: hydrosilylation versus semihydrogenation, Catal. Sci. Technol. 2018, 8, 1039-1050. (http://pubs.rsc.org/en/content/articlelanding/2018/cy/c7cy02280h/ unauth#!divAbstract)   3.Guijie Ji, Yanan Duan, Shaochun Zhang, Yong Yang, Synthesis of benzofurans from terminal alkynes and iodophenols catalyzed by recyclable palladium nanoparticles supported on N,O-dual doped hierarchical porous carbon under copper- and ligand-free conditions, Catalysis Today, 2018, 10.1016/j.cattod.2018.04.036. (https://www.sciencedirect.com/science/ article/pii/S0920586118304814)   4.Yanan Duan, Tao Song, Xiaosu Dong, Yong Yang, Enhanced catalytic performance of cobalt nanoparticles coated with a N,P-codoped carbon shell derived from biomass for transfer hydrogenation of functionalized nitroarenes, Green Chem. 2018, 20, 2821-2828. (http://pubs.rsc.org/en/content/articlelanding/2018/gc/c8gc00619a/unauth#!divAbstract)   5.Tao Song, Peng Ren, Yanan Duan, Zhaozhan Wang, Xiufang Chen, Yong Yang, Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes, Green Chemistry, 2018, 10.1039/C8GC01374H. (https://pubs.rsc.org/en/content/articlelanding/2018/gc/c8gc01374h/unauth#!divAbstract)   6.Xiaosu Dong, Zhaozhan Wang, Yanan Duan, Yong Yang, One-pot selective N-formylation of nitroarenes to formamides catalyzed by core–shell structured cobalt nanoparticles, Chem. Commun., 2018, 10.1039/C8CC05285A. (http://pubs.rsc.org/en/content/ articlelanding/2018/cc/c8cc05285a#!divAbstract)   相关申请专利:   1.一种借氢还原偶联合成亚胺和胺类化合物的方法(申请号:201810430256.4)   2.一种芳胺类化合物的制备方法(申请号:201810145587.0)   3.一种氮掺杂生物质基碳材料负载催化剂及其制备和应用(申请号:201810365971.4)   4.一种通过无铜无配体钯催化剂合成苯并呋喃衍生物的方法(申请号:201810353093.4)