《船用碳纤维复合材料的发展趋势变化》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-03-05
  • 早期碳纤维复合材料都是应用在小型巡逻艇和登陆舰上。相对差的制造质量和船体刚度限制了船舶的长度不能超过15m,排水量不超过20t。近年来,随着复合材料设计、制备成本的降低,以及力学性能提高,复合材料开始在大型舰船,如猎雷艇和轻型护卫舰上得到应用。随着技术的发展,船舶的长度呈稳定的增加趋势,现在已有80—90m的全复合材料海军舰船。

    美国是复合材料科学技术发展最先进,复合材料应用最广、用量最大的国家,在船舶复合材料的应用方面,其规模和技术都走在世界前列。美国海军于1946年采用聚酯玻璃钢建成了交通艇,是世界上第一艘复合材料舰船,随后又制造了玻璃钢登陆艇、工作船等。

    进入21世纪后,美国进一步加强了复合材料在船舶建造的应用,采用新型高强碳纤维/乙烯基树脂的夹心层结构,取代传统玻璃纤维等低强度纤维,建成的新型船舶稳定性高、航速快,并具有隐身、反潜、反水雷能力。欧洲复合材料船舶工业也十分发达。

    20世纪60年代中期,英国采用玻璃钢先后制造了450t的大型扫雷艇和625t的猎雷艇,1973年采用复合材料建造了全玻璃钢反水雷艇,其成功应用推动了复合材料的迅速发展,20世纪90年代,英国成功应用碳-玻混杂纤维建造了摩托艇、巡逻艇等,随着技术的发展,近年来还成功应用回收塑料瓶再加工材料建造舰船,不仅降低了成本,还符合材料生物降解以及循环利用的发展方向。20世纪90年代瑞典成功研制了世界上第一艘复合材料隐形试验艇,并逐步发展形成了以高性能碳纤维和夹芯结构为特点的建造方式,开发建造了集先进复合材料技术和隐身技术于一体的系列轻型驱逐舰,已成功下水服役。

    20世纪90年代瑞典成功研制了世界上第一艘复合材料隐形试验艇,并逐步发展形成了以高性能碳纤维和夹芯结构为特点的建造方式,开发建造了集先进复合材料技术和隐身技术于一体的系列轻型驱逐舰,已成功下水服役。

    日本自20世纪50年代起就开始建造玻璃钢船,在高性能船、赛艇和豪华游艇建造方面取得了不俗的成绩。进入21世纪,日本开始研究制造高性能复合材料军用船舶,目前已成功建成第一艘玻璃钢复合材料扫雷艇并投入使用。

    我国复合材料在船舶方面的研发应用起始于1958年,第一艘玻璃钢工作艇诞生于上海。在20世纪70年代中期曾研制过一艘总长近39m的扫雷试验艇,此后对GRP/CM反水雷舰艇的研发工作就中断了十多年。20世纪90年代以来,随着技术发展与工艺引进,我国采用复合材料生产了大量游艇、帆船、救助艇,以及公安、武警、海监、海关等航速较高的巡逻艇、执法艇、缉私艇等准军事艇,但迄今为止还未设计建造一艘高科技含量的海军反水雷舰艇。

    与国外相比,目前我国船用复合材料应用范围和规模仍然较小,但借着碳纤维复合材料在国内高速发展的东风,国内船用碳纤维复合材料的发展令人侧目。其碳纤维复合材料声纳导流罩、碳纤维复合材料雷达天线罩等都已形成较为成熟的应用。

    由此可以看出国内在碳纤维复合材料船用方面拥有非常大的潜力,虽然整体与国外还存在一定差距,不过相信在众多材料人的努力下,未来国内船用复合材料的发展差距一定会逐渐缩短,甚至超越。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=553720
相关报告
  • 《一文读懂化学纤维新材料技术发展趋势》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-03-31
    • 一、纤维材料技术发展趋势 发达国家制定了关于先进纤维材料的国家战略和研发方案,例如德国名为“工业4.0”的Future TEX项目已经开始,该项目侧重研究可再生纤维材料、面向顾客的纤维产品和新纤维材料,包括智能纤维;美国建立了纤维和纺织品工业创新机构,重点开发新一代智能纤维纺纱技术;法国建立了新的UP-TEX纤维和工业纺织品创新基地,以促进纤维工业的技术创新,重点运用智能纤维、高工业技术制成新布料、性能较低的纤维、高效纳米医学先进材料和新纤维防护材料。欧盟启动了“地平线2020”方案,重点包括医疗设备和智能纤维产品、高技术非纺织材料、高性能复合纤维材料、先进纳米纤维材料、抗降解纤维材料等。我国通过与纺织企业合作,将重点放在整个链的纤维上,使高性能纤维工业能多领域发展。先进纤维材料是我国10项优先突破之一,是《纺织工业发展规划(2016—2020年)》的优先方向,这也是中国2025年材料开发和制造战略的重要趋势。关于新纤维材料,中国预计在今后10年内重点开发高性能、多功能、智能化、绿色低碳和高附加值纤维制造技术。 二、化学纤维专利分析 1960—2000年,我国化学纤维专利较少,但2000年后,随着化学纤维制造业向中国转移,我国专利申请数量呈现快速增长趋势。 1985年以来,中国专利申请数量逐渐增加,特别是在2000年之后,我国专利申请数量增加明显。尽管2008年发生了金融危机以及2013—2014年化学纤维行业发展停滞不前,我国工业仍通过结构重组和优化,实现了高质量发展,专利申请情况总体良好。 2000年以来,中国的化学纤维专利申请量排名最高,且许多国内大学都在申请专利,东华大学处于领先地位。此外,中国石油和化学品有限公司、江苏化学纤维有限公司、杜邦公司和唐利公司都在积极地申请专利、保护知识产权。 深入分析我国2000年以来的化学纤维专利权发现,主要集中在功能纤维、高性能纤维、纳米纤维、生物纤维和生物医学纤维等,其中,功能性纤维是化学纤维专利申请的热点。2000年以来,功能性纤维专利申请量逐年增加,说明功能性纤维发展迅速,化学纤维的功能越来越受重视。在化学纤维产品生产方面,满足终端需求已成为重要趋势。 2019年,中国专利申请量超过海外专利申请量(专利分析数据均源于国家知识产权局官网),超越了2018年的专利申请数量的统计数据,我国一改化学纤维制造业落后局势,呈现出明显优势。目前,我国化学纤维专利数量,特别是在聚酯纤维和异性纤维等方面,在国际上名列前茅。进一步分析国内外化学纤维专利权发现,专利申请以聚酯纤维、聚苯乙烯纤维和聚丙烯纤维等为主。我国光导纤维和碳纤维的专利申请数量与国外相比还有很大差距,主要原因是国外的技术比较成熟,而我国正处于快速增长阶段。从表1可以发现,中国的专利申请占82.0%,表明中国越来越重视化学纤维的知识产权保护。日本、德国和美国等国家在中国也申请了一定比例的专利权,表明发达国家也在密切关注中国化学纤维的发展。 三、聚酯纤维专利技术 2017年,中国的聚酯纤维产量为39.340 kt,占中国纤维总产量的85.0%以上,占世界纤维总产量的66.0%(分析数据均源于国家知识产权局官网)。然而,聚酯纤维在增强生产能力、提高产品附加值、降低劳动成本和促进能源消费方面还存在一些问题。由于生产能力较弱,纤维在使用和处置后的降解周期较长,回收率较低,导致聚酯纤维的发展优势与现有的发展瓶颈之间产生冲突。2015年以来,我国聚酯纤维的发展重点一直是高性能聚酯纤维及其工业用途、聚酯纤维的回收和生物降解,部分已成为“十三五”国家优先研究的开发项目。 1.高仿真与功能化聚酯纤维 高仿真聚酯纤维和异性纤维是聚酯纤维产品开发的主要方向。聚酯纤维的高仿真是对动物和自然植物纤维的仿真,结合了各种改造技术调整结构和性能,使用聚酯纤维符合环保、卫生、安全的理念,可满足消费者的不同需求。聚酯纤维的多种转换技术包括分子设计中的聚合技术、共混技术、纤维形态技术等。聚合技术是利用协同作用将核心物质与聚合物分子结合起来;共混技术是采用功能母粒,通过共混纺丝制得改性聚酯纤维;纤维形态技术是指改变纤维截面,如中空、异形等;后整理技术包括纺纱工艺与织造工艺等。分析聚酯纤维专利权发现,经过2000年以来的一段快速增长时期,功能性聚酯纤维的专利申请数量呈上升趋势,反映了功能性聚酯纤维的发展已达到一定水平,市场需求日益增加。今后,要在提高产品质量方面加大投资,实现质量标准化。 2.高性能与产业用聚酯纤维 高性能产业用聚酯纤维现广泛应用于运输、环境保护和工程领域,在安全保护领域也发挥着重要作用,并得到了迅速发展。产业用聚酯纤维是许多工业用橡胶轮胎的好材料,产品坚牢耐用,如工业用织物、包装、装甲织物、结构薄膜、安全气囊、传送带等。2000—2009年,产业用聚酯纤维相关的专利申请数量持续增加,2010年以来迅速增加,表明工业领域对高性能聚酯纤维的需求保持稳定。 3.生物降解与循环再生聚酯纤维 研究数据表明,每年全球环境污染和生态破坏造成的损失高达1亿美元,严重影响社会可持续发展。废旧纤维产品通常被倾倒在填埋场或直接焚烧,不仅会造成严重的环境污染,还会造成大量的资源浪费。全国废旧纤维产品总量为1.4×105 kt,但目前回收率不到10.0%,预计到“十三五”结束,废旧化学纤维产品的总量约为2.0×105kt。回收化学纤维不仅能缓解资源短缺现状,还能减少废旧纤维产品中的聚酯纤维造成的环境污染。与简单且应用广泛的传统处理方法相比,再循环和生物降解技术更加有效。一方面,随着聚酯纤维的快速发展,废旧聚酯纤维和产品的社会存量大幅增加,环境保护面临巨大压力。另一方面,随着环保理念深入人心,生物降解和聚酯纤维的循环引起社会关注。功能性聚酯纤维、工业聚酯纤维的生物降解和循环利用是纤维材料功能开发和资源补充领域的重要研究方向。此外,绿色环保型聚酯纤维的研发是重要趋势,生产过程更加强调整个生命周期的绿化以及高效性、灵活性、数字化和智慧化。 四、结语 随着我国化学纤维工业的发展,化学纤维材料相关知识产权广受关注。目前,化学纤维,尤其是聚酯纤维和聚酰胺纤维的专利申请处于领先地位,高等院校等科研机构对化学纤维的基础研究和应用展现出明显优势。我国应建立健全知识产权制度,为异性纤维、高性能纤维、纳米纤维、生物医学纤维和智能纤维的发展提供制度保障。通过分析聚酯纤维专利现状发现,我国化学纤维新材料的开发应侧重于高仿真、生物降解、循环利用、绿色和智能制造等方面的技术创新。
  • 《5G时代 复合材料的发展机遇》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-01-14
    • 5G给我们带来的是超越光纤的传输速度(Mobile Beyond Giga),超越工业总线的实时能力(Real-Time World)以及全空间的连接(All-Online Everywhere), 5G将开启充满机会的时代。 从5G的建设需求来看,5G将会采取“宏站+小站”组网覆盖的模式,历次基站的升级,都会带来一轮原有基站改造和新基站建设潮。5G基站的海量增长,将同步带动PCB、天线振子及滤波器等元器件应用的大幅增长。 在5G基站中,印刷电路板(Printed Circuit Board,简称PCB)作为最基础的连接装置将被广泛使用。 PCB产业界广泛应用的基板材料是玻纤布增强的环氧型基材FR-4(环氧树脂玻纤布覆铜板),该材料是由一层或者多层浸渍过环氧树脂的玻璃纤维布构成。 璃纤维布和特殊树脂是PCB重要的原材料之一,玻璃纤维布作为增强材料,起着绝缘和增加强度的作用;特殊树脂作为填充材料,起着粘合和提升板材性能的作用。 为了满足高频高速PCB产品的可靠性、复杂性、电性能和装配性能等诸多方面的要求,许多PCB基板材料的厂商对特殊树脂进行了不同的改进。 在目前高速高频化的趋势下,较为主流的PCB材料包括聚四氟乙烯树脂(PTFE)、环氧树脂(EP)、双马来酰亚胺三嗪树脂(BT)、热固性氰酸脂树脂(CE)、热固性聚苯醚树脂(PPE)和聚酰亚胺树脂(PI),由此衍生出的覆铜板种类超过130种。 对于基站PCB而言,最为重要的指标是介电特性、信号传输速度和耐热性,前两点上PTFE基板都具有较好的性能。 它是目前为止发现的介电性能最好的有机材料,优异的介电性能有利于信号完整快速地传输,这角度而言PTFE是5G时代基站PCB板的优选树脂材料。 塑料天线振子大有可为 天线振子是天线的核心部件。天线振子作为天线的主要组成部分,主要负责将信号放大和控制信号辐射方向,同样可以使天线接收到的电磁信号更强。 5G时代由于频段更高且采用Massive-MIMO技术,天线振子尺寸变小且数量大幅增长,综合考虑天线性能及AAU安装问题,塑料天线振子方案具有一定的综合优势。 为了应对5G新型天线的变化,市场上出现了全新的工艺——3D选择性电镀塑料振子方案。 所谓的塑料天线振子即采用内含有机金属复合物的改性塑料材料,用注塑成型的方式将复杂的3D立体形状一次性制造出来,再利用特殊技术使塑料表面金属化。塑料振子在保证天线满足5G电器性能的同时,产品重量大大减轻,减少了危险过程工序,也节约了成本。 3D塑料振子除了重量非常轻,还能满足钣金和压铸工艺所不能实现的精度要求。注塑和选择性电镀都是精度非常高的工艺,将它们结合在一起,可以保证天线振子精度满足3.5G以上的高频场景要求。 陶瓷介质滤波器优势多 4G时代,通信基站主要采用金属腔体滤波器方案。5G时代,基站通道数扩展 16 倍,器件小型化成为趋势,陶瓷介质滤波器具有轻量化和小型化优势,同时具有可靠的机械结构、无振动结构,便于自动化组装,长期来看,将成为 5G 基站主流部件。 复合材料通讯塔和天线罩 高高耸立的通讯塔大都是钢结构,但腐蚀是个大问题,复合材料可以解决这个问题。复合材料比较轻,使用无扣件连接技术,塔结构的各个独立部件可以快速组装,在装配过程中不需要金属螺栓,安装方便,还减轻了整个塔体的重量。 天线罩要具有良好的电磁波穿透特性,机械性能上要能经受外部恶劣环境的侵蚀如暴风雨、冰雪、沙尘以及太阳辐射等。在材料要求方面,要求在工作频率下的介电常数和损耗角正切要低,及要有足够的机械强度。 一般而言,充气天线罩常用涂有海帕龙橡胶或氯丁橡胶的聚酯纤维薄膜;刚性天线罩用玻璃纤维增强塑料;夹层结构中的夹心多用蜂窝状芯子或泡沫塑料。 而在5G趋势下,性能优越的复合材料成为备受欢迎的天线外罩材料。复合材料能起到绝缘防腐、防雷、抗干扰、经久耐用等作用,而且透波效果非常好。 手机后盖:首选PC/PMMA塑料复合材料 5G 时代,针对手机结构、形态新的要求,例如小型化、超薄化、全面屏等,都需要新的工艺和材料支撑。无线充电、NFC 等功能需求加快手机后盖去金属化推进,带动 PC/PMMA 共挤复合板材市场规模大幅上升。 5G时代,对 5G应用设备材料提出了更严苛的要求。由于5G走的是对金属敏感的毫米波,使用金属外壳将会屏蔽信号。塑料复合材料凭着优越的性能,成为手机后盖的潮流选择。 当中,最热门的要数PC/PMMA复合板材。这种材料是将PMMA和PC通过共挤(非合金材料)制得,包括PMMA层和PC层。 MMA层加硬后能达到4H以上的铅笔硬度,保证了产品的耐刮擦性能,而PC层能确保其具有足够的韧性,保证了整体的冲击强度。 石墨烯:理想的5G设备导热散热材料 高频率、硬件零部件的升级以及联网设备及天线数量的成倍增长,设备与设备之间及设备本身内部的电磁干扰无处不在,电磁干扰和电磁辐射对电子设备的危害也日益严重。 与此同时,伴随着电子产品的更新升级,设备的功耗不断增大,发热量也随之快速上升。 未来高频率高功率电子产品要着力解决其产生的电磁辐射和热。 为此,电子产品在设计时将会加入越来越多的电磁屏蔽及导热器件。因此电磁屏蔽和散热材料及器件的作用将愈发重要,未来需求也将持续增长。 以导热石墨烯为例,5G手机有望在更多关键零部件部位采用定制化导热石墨烯方案,同时复合型和多层高导热膜由于具备更优的散热效果而将会被更多采用。 5G复合材料相关新闻 科思创研发5G基站外壳材料 2019年年中,科思创亚太区创新副总裁施马可表示,公司已成功研发了适用于5G基站的外壳材料。 施马可表示,5G技术拥有频率高、波长短的特点,导致其信号衰减程度较大,这意味着需要借助于大量5G微型基站的部署不断放大信号,确保信号覆盖。相比于4G时代,5G的微型基站数量预计将增加约20倍左右。 而在开发5G基站的过程中,必须确保5G的高频信号能够顺利穿透外壳,这对材料提出了较高要求。在一年多前,科思创位于上海的聚合物研发中心启动了这项针对5G基站外壳材料的实验。 巴斯夫创新聚氨酯解决方案为中国5G通信塔提供稳固支持 巴斯夫Elastolit?聚氨酯(PU)创新材料解决方案为中国部署5G网络提供助力。安徽汇科恒远复合材料有限公司(汇科)采用Elastolit制成60座通信塔,分布在北京、苏州以及黑龙江和江西的多个城市。 相比传统混凝土或钢基材料,采用Elastolit?制成的通讯塔质量更轻,即便在偏远地区亦可快速安装,同时能够抵御大雪和强风等恶劣天气。 巴斯夫亚太区特性材料部全球高级副总裁鲍磊伟(Andy Postlethwaite)表示:“5G基站承载传输设备和天线,必须在恶劣天气条件下保持强韧。采用巴斯夫PU复合材料制成的35米高通信塔重约1,500至1,800千克,其断裂强度是自身重量的十倍。” 不仅如此,Elastolit?制成的通讯塔较传统钢塔更具成本效益。Elastolit?具有耐锈和耐腐蚀特性,所需维护量更小。表面覆盖有一层特殊配方的耐紫外线涂层,能够延长其使用寿命。同时具有防火性,能够迅速自熄。 俄罗斯物理学家开展用于5G设备的复合材料性能研究 俄罗斯托木斯克州立大学(TSU)的放射物理学家正在建立一个复合材料性能数据库,该数据库可辅助创建在太赫兹范围内运行的5G及空间通信设备。科学家们正在用丙烯腈-丁二烯-苯乙烯(ABS)工程塑料和碳纳米管研制复合材料,并在10兆赫至1太赫兹的频率范围内测量其性能。 为了开发这种原始材料,放射物理学家正在使用聚合物,并在化学工艺的辅助下,用碳纳米管进行填充。这些材料目前正由俄罗斯科学院西伯利亚分院的波列斯科夫催化研究所为放射物理学院的太赫兹实验室生产。 “通过添加不同含量的碳纳米管,我们改变了材料的介电性能。例如,我们可以增加介电常数。”放射物理学院副教授、项目经理Alexander Badyin解释说,“然后,我们使用3D打印技术,可以获得带有元件(导体、电阻等)的印刷电路板。我们通过控制装置的参数来打印对照样品(板或环),并检测复合材料在太赫兹范围内的工作性能。” 研究人员表示,此前的科研工作主要聚焦在4-5千兆赫兹的家用辐射频段中。而TSU科学家团队的工作范围更广——最高可达1太赫兹。研究人员表示,目前这项研究还不够充分。截至2019年12月,研究人员已经研究了近50个样品的特性。 日本信越化工推出“石英布”等适应5G时代需求的产品 日本信越化学工业根据5G时代的需求,推出了“石英玻璃纤维布”、“热固性低介电树脂”,可以用于5G高频带的电子器件和电路基板、天线、雷达罩等。此外,信越化学工业还增加了散热片的品种。 石英玻璃纤维布的介电常数低于3.7,消耗因数低于0.001,线膨胀系数低于1ppm/℃,传输损耗(电信号的劣化程度)的特性极为优异。该产品最适合作为5G超高速布线基板的核心材料,天线、雷达罩的纤维增强树脂零件等。 热固性低介电树脂是一种接近氟树脂、拥有低介电常数和高强度的低弹性树脂。它的高频带(10~80GHz)介电常数低于2.5,消耗因数低于0.00025。这是热固性树脂的最低水平。由于产品的低吸湿性、对低粗度的铜箔也具有很高的粘着力,因此也可用于FCCL(软性铜箔基材)。