《核心算法缺位 人工智能发展面临“卡脖子”窘境》

  • 来源专题:数控机床——前沿技术
  • 编译者: icad
  • 发布时间:2019-06-17
  • “中国有多少数学家投入到人工智能的基础算法研究中?”日前,在上海召开的院士沙龙活动中,中国工程院院士徐匡迪等多位院士的发问引发业界共鸣,被称为“徐匡迪之问”。“我国人工智能领域真正搞算法的科学家凤毛麟角。”在4月28日召开的“超声大数据与人工智能应用与推广大会”上,东南大学生物科学与医学工程学院教授万遂人表示,“徐匡迪之问”直击我国人工智能发展的核心关键问题,“如果这种情况不改变,我国人工智能应用很难走向深入、也很难获得重大成果”。

    我国人工智能领域发展的现状如何?依靠开源代码和算法是否足够支撑人工智能产业发展?为什么要有自己的底层框架和核心算法?缺少核心算法,会被“卡脖子”“如果缺少核心算法,当碰到关键性问题时,还是会被人‘卡脖子’。”浙江大学应用数学研究所所长孔德兴教授对科技日报记者表示,我国人工智能产业的创新能力并没有传说中的那样强,事实是,产业发展过度依赖开源代码和现有数学模型,真正属于中国自己的东西并不多。

    4个月零基础学会人工智能、16讲入门人工智能、算法线下大课……类似培训在网络上非常火爆,通过对于现有算法、模型的学习和训练,成长为人工智能工程师的“短平快”可见一斑。既然代码是开源的,拿来用就好,为什么还有可能被“卡脖子”?孔德兴解释,开源代码是可以拿过来使用,但专业性、针对性不够,效果往往不能满足具体任务的实际要求。以图像识别为例,用开源代码开发出的AI即使可以准确识别人脸,但在对医学影像的识别上却难以达到临床要求。

    “例如对肝脏病灶的识别,由于边界模糊、对比度低、器官黏连甚至重叠等困难,用开源代码很难做到精准识别。在三维重构、可视化等方面难以做到精准反应真实的解剖信息,甚至会出现误导等问题,这在医学应用上是‘致命’的。”“碰到专业性高的研究任务,一旦被‘卡脖子’将会是非常被动的,所以一定要有自己的算法。”孔德兴说。

    换句话说,是否掌握核心代码将决定未来的AI“智力大比拼”中是否拥有胜算。用开源代码“调教”出的AI顶多是个“常人”,而要帮助AI成长为“细分领域专家”,需以数学为基础的原始核心模型、代码和框架创新。有算法之“根”才能撑起产业“繁茂”所谓“树大根深”,人工智能的发展也是同样道理,越在底层深深扎下根基,越能够发展出强大的产业。

    借助开源代码,“半路出家”的AI产业为什么会难以为继?孔德兴解释说,在获得同样数据的前提下,以开源代码运行,AI深度学习之后或许能输出结果,但由于训练框架固定、算法限制,当用户进行具体的实际应用时,将很难达到所期望的结果,而且难以修改、完善、优化算法。“如果从底层算法做起,那么整个数学模型、整个算法设计、整个模拟训练‘一脉相承’,不仅可以协同优化,而且可以根据需求随时修改,从而真正解决实际问题。”

    孔德兴说,基础算法往往是指研究共性问题的算法,它涉及到基础数学理论、高性能数值计算等学科,可以应用到多种实际问题中;而针对性强的应用算法往往会应用到具体问题所涉及的“具体知识、先验信息”,从而更好地解决实际应用问题。“基础算法和应用算法都很重要,拥有基础算法将更有助于应用算法的丰富与深入。”孔德兴说,AI要应对的现实生活是复杂、多变的,当能够“应对自如”时,才能够促成产业的“繁茂”。

    呼吁三方协力,让数学不再置身事外“一方面是政策引导,其实国家已经在加大这方面的扶持,例如科研基金上的设置等。”针对如何解决“徐匡迪之问”反映出来的问题,孔德兴认为,第二方面是行业企业在进行科技创新时,应有意识将数学学者纳入进来。“如果通过算法的开发,最终产品落地了,企业应该将算法开发时的数学学者纳入到成果分享中来。”孔德兴说,社会目前对于数学科学等“软实力”的认可程度不足,行业或法规层面应该做好数学研究成果的产权保护工作。“第三方面,数学家本身应该积极参与到人工智能发展的浪潮里。”孔德兴呼吁,AI的未来发展需要数学家深度参与。由于目前仍处于“弱人工智能”时代(可以说是数据智能时代),AI的实现主要是依赖计算机的巨大算力和巨大的存储能力,底层算法的问题或许并不突出,但在未来的发展,AI将可能融入逻辑、思维等智慧的内容,这些都需要数学科学的原始创新,有大量的基础问题亟待数学家攻克。

    算法的进阶一定是来源于“原创者”,而不是“跟随者”。孔德兴说:“实际上深度学习的应用已遇到了天花板,我们需要新的数学技术(如部分依赖逻辑、部分依赖数据的‘聪明算法’),让计算机变得聪明起来。这些工作都需要数学家的参与。”.

相关报告
  • 《国家发展改革委 国家能源局关于推进“人工智能+”能源高质量发展的实施意见》

    • 编译者:梁美宏
    • 发布时间:2025-10-30
    • 国家发展改革委 国家能源局关于推进“人工智能+”能源高质量发展的实施意见(国能发科技〔2025〕73号)         各省、自治区、直辖市及计划单列市、新疆生产建设兵团发展改革委、能源局,有关中央企业,有关行业协会: 为深入贯彻党中央、国务院关于发展人工智能的决策部署,落实《国务院关于深入实施“人工智能+”行动的意见》(国发〔2025〕11号)有关工作要求,抢抓人工智能发展重大战略机遇,突出应用导向,加快推动人工智能与能源产业深度融合,支撑能源高质量发展和高水平安全,现提出如下意见。  一、总体要求         坚持以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大和二十届二中、三中全会精神,全面贯彻习近平总书记关于推动人工智能与实体经济深度融合、培育壮大智能产业的重要指示精神,以拓展人工智能与能源领域深度融合应用场景为重要依托,以提升能源领域人工智能创新应用技术水平为主攻方向,以推进智能算力与电力协同发展为必要支撑,以健全能源智能化发展的创新体系为关键保障,着力提升能源系统安全可靠与灵活高效运行能力,保障能源安全稳定供应和绿色低碳转型,加快培育新质生产力,为新型能源体系建设提供有力支撑。 到2027年,能源与人工智能融合创新体系初步构建,算力与电力协同发展根基不断夯实,人工智能赋能能源核心技术取得显著突破,应用更加广泛深入。推动五个以上专业大模型在电网、发电、煤炭、油气等行业深度应用,挖掘十个以上可复制、易推广、有竞争力的重点示范项目,探索百个典型应用场景赋能路径,培育一批能源行业人工智能技术应用研发创新平台,制定完善百项技术标准,培养一批能源与人工智能复合型人才,探索建立能源领域人工智能技术研发应用金融支撑体系,形成符合我国国情的能源领域人工智能技术创新发展模式,能源领域智能化成效初显。 到2030年,能源领域人工智能专用技术与应用总体达到世界领先水平。算力电力协同机制进一步完善,建立绿色、经济、安全、高效的算力用能模式。能源与人工智能融合的理论与技术创新取得明显成效,能源领域人工智能技术实现跨领域、跨行业、跨业务场景赋能,在电力智能调控、能源资源智能勘探、新能源智能预测等方向取得突破,具身智能、科学智能等在关键场景实现落地应用。形成一批全球领先的“人工智能+”能源相关研发创新平台和复合人才培养基地,建成更加完善的政策体系,持续引导“人工智能+”能源高效、健康、有序创新,为能源高质量发展奠定坚实基础。  二、加快能源应用场景赋能         ( 一 ) 人工智能+ 电网。 围绕新型电力系统下的电网安全、新能源消纳、运行效率等要求,开展电力供需预测、电网智能诊断分析、规划方案智能生成等电网规划设计应用,加强电网工程智慧建设管理;推进电网多尺度智能仿真分析,探索人工智能模型在电网智能辅助决策和调度控制方面的应用,提升电力系统源网荷储全要素安全可靠低碳运行水平;稳步提高输变电等关键装备研制智能化水平;推动电力设备故障预测性维护,打造具备自主感知、决策、执行能力的电力设备健康管理智能体,提升设备精益化管理水平;推动营配调智能一体化应用,构建电网运营服务智能支撑体系,提升电力客户全过程智能服务水平;促进人工智能技术融入电力应急体系和能力建设,提升电力系统防灾减灾救灾智能化水平。 专栏1  人工智能+电网典型应用场景 电网智能规划设计与生产建设。 构建电力供需智能预测、电网运行智能诊断分析、电网规划智能辅助决策、输变电设施智能设计等应用,应用人工智能技术开展规划设计和技术经济分析,推动电网规划设计作业模式向智能化转变。聚焦建设阶段的作业感知与业务监测,构建电网建设的人工智能违章识别、进度仿真、在线监测、管控指标实时分析、作业流程智能管理等应用,促进电网工程建造智能升级。 电网调度运行。 在全国统一电力市场建设背景下,构建新能源功率预测、负荷预测、离线仿真分析、在线安全分析、极端应急处置、调度辅助决策、市场出清运筹优化、电力市场智慧决策等方面的智能化应用,持续完善新一代智能调控技术支持体系,支撑新型电力系统安全稳定运行。 电力设备状态评价与智能运维。 构建设备状态智能感知与预警、设备故障智能定位与诊断、设备状态检修智能决策、设备灾害风险智能预测、检修工作票智能生成等应用,提升设备精益化管理水平。 配电网智能运行管理。 构建配电网实时感知、风险分析、智能决策等技术应用,全面提升配电网智慧控制能力和供电可靠性,加强配电网层面源网荷储协同调控。 电力应急抢修。 构建电力系统灾害风险智能预警、损毁情况智能分析、应急方案智能决策等辅助决策系统,推进电力应急抢修技术装备智能化应用,提升电力系统防灾减灾救灾能力。         ( 二 ) 人工智能+能源新业态。 围绕能源保供和绿色低碳转型需求,推进人工智能技术在虚拟电厂(含负荷聚合商)、分布式储能、电动汽车车网互动等灵活性调节资源中的应用,提升负荷侧群控优化和动态响应能力;加强人工智能技术在新型储能与电力系统协同优化调度以及全生命周期安全中的应用,推动可再生能源制氢生产工艺智能寻优。强化人工智能技术赋能能源生产过程中的节能和碳排放管理,提升多能互补综合能源系统电、热、冷、气联供的综合能效和降碳水平。推动人工智能在零碳园区、智能微电网、算电协同中的应用,提升源网荷储一体化智能运行水平,促进新能源就地消纳。 专栏2  人工智能+能源新业态典型应用场景 虚拟电厂精准控制与智能运营。 虚拟电厂运营商平台根据电网调节指令、市场信息,结合资源特性的动态变化,进行控制策略的智能优化和控制指令的智能生成,实现大规模灵活性资源聚合优化调控、实现虚拟电厂参与电力市场的智慧交易决策。 绿氢生产工艺智能寻优。 融合风光功率波动预测、储氢罐容量、电解槽温度、催化剂状态等多维数据,基于人工智能算法,智能驱动电解槽电流密度动态寻优,构建电解制氢-储氢-用氢全链条智能调控系统,实现可再生能源功率波动与电解装置柔性负荷的毫秒级匹配。 园区智能降碳。 基于光伏、储能等设备运行数据,园区智能降碳协同控制系统实时动态优化能源调度策略,结合电价与碳排放因子自动调节空调温度、充电桩功率及设备启停时序,通过增强现实可视化界面和语音助手向用户推送个性化节能建议,形成“碳-能-费”智能协同模式。 新型储能智能化运行。 针对新型储能动态适配电力系统调度、广域协同互动、弱电网支撑、电池装备安全监测、设备本体评估与运维,通过人工智能技术,提升面向弱电网的多类型储能协调控制能力,构建新能源与配建新型储能广域协同优化控制、储能电站智能评估、智慧运维决策支持、全生命周期安全等应用体系,提升系统友好型新能源电站的电力供应保障能力。 智能营销服务。 针对油、气、电等直接面向客户服务场景,构建座席业务受理智能辅助、智能客户服务、供电方案智能生成、综合用能方案智能生成、运维工单智能派发、用户用能异常诊断等智能化应用,打造交互式、伴随式的客服新模式,提升客户全过程智能化服务水平。         (三) 人工 智能+新能源。 针对新能源出力波动性与间歇性的问题,加快在高精度功率预测、电力市场、场站智慧运营、新能源规划、项目后评价等方向的人工智能应用,持续推动新能源关键材料及产品不断迭代和创新,推动复杂场景及转折性天气下功率预测大模型在更小尺度、更高精准度方向发展,支撑广域新能源资源协同优化,促进偏远地区新能源场站智能运维发展,打造“气象预测+功率预测+智慧交易+智能运维”一体化新能源智能生产模式,全力支撑新能源稳定供给。 专栏3  人工智能+新能源典型应用场景 气象预报与新能源功率精准预测。 构建以多时空尺度气象预报为核心的气象服务体系,建立气象-功率非线性关系精准挖掘与解析的多场景多周期算法大模型,实现新能源功率精准预测。 偏远地区场站智能运维。 利用大模型、声纹检测、遥感、机器人、智能穿戴设备等技术装备,实时监测周边环境及设备运行状态,实现无人机、无人车、无人船、智能控制等多系统智能联动,提升设备巡检效率,提高场站的综合运营效率。 新能源规划设计。 综合考虑发电效率、投资回报率等因素,构建智能化推荐引擎,提供最优机型匹配方案。融合大模型与设计软件,快速生成多版本设计方案并评估关键参数,提升设计效率与质量。 智慧工地建设。 推动人工智能技术深度融入工程建设方案选择、人员管理、风险预警、工期管控等电力建设工程管理全流程,研发无人机巡检系统、风险自动研判预警系统等,实时捕捉施工人员违章行为,构建贯穿施工全过程的“智慧工地”管理平台,助力提升电力建设工程安全质量总体水平。        (四)人工智能+水电。 聚焦高海拔高寒地区水电工程智能化建设与流域水电站群智慧调度运营,推进人工智能技术在水电工程建设中的应用,提升水电工程智能化设计施工管理水平;推进人工智能技术与传统水文模型、气象模型、大规模水库调度技术融合,提升气象、水文双向耦合预测精度,开展调度决策优化智能应用建设;推动知识图谱、大模型、智能体等技术融入新一代水电智慧运营大脑,在水电站智慧运维与精益检修、智能大坝态势感知与智慧管理等重点领域形成智能化解决方案。 专栏4 人工智能+水电典型应用场景 智能水电工程建设。 基于多源遥感数据融合和智能机器人等人工智能技术,建立水电工程地质智能化勘测设计体系,实现机组设备数字化智能化安装调试,提升水电工程智能化施工管理水平。 气象水文联合预测。 基于流域气象水文双向耦合预测大模型,构建洪旱极端事件风险量化工具,充分融合气象知识、水文知识和流域地理信息,提升气象水文预报精度和预见期。 流域综合调度。 基于流域站群联合智慧优化调度、风险控制和模拟仿真等关键技术,建设精准调度决策优化智能应用,实现对水资源调度方案执行情况的实时监测、分析和评估,在时间和空间上对水资源分配进行优化,提高水能利用率,增加发电效益。 设备智能运检。 基于物理场、声学、视觉、智能传感器等多源数据以及知识图谱、大模型等技术,推动水电关键设备实现状态全息监测、全生命周期健康管理、智能运维和状态检修等业务领域全流程智能化升级,实现运维知识结构化管理与基于大模型-智能体的智能辅助决策系统。 大坝高质量运行。 构建大坝典型病害特征数据库与知识图谱,结合大坝智能感知-融合-诊断-防控理论方法,实现多元驱动的大坝安全状态早期识别-自诊断-自适应预警-智能馈控,确保水电站大坝运行安全,支撑水库大坝高质量运行管理。         (五)人工智能+火电。 围绕火电清洁降碳、安全可靠、高效调节、智能运行的发展方向,在燃料管控、生产运行优化与智能控制、设备全生命周期管理等业务场景,协同开展人工智能赋能及技术创新。加快火电数字化设计建造和智能化升级,推动火电运行控制系统智能化发展和应用,提升火电关键装备全生命周期智能监测及健康管理能力,助力火电支撑保障能力进一步提升。 专栏5  人工智能+火电典型应用场景 燃料智能管控。 基于燃料市场价格波动、库存量、耗煤量以及煤堆三维结构、煤质分析等多维度多类型数据,采用先进传感、图像识别、规则理解以及智能体等技术,实现燃料数量、质量等智能检测和智能管控。 生产运行优化。 基于大模型和生产运营相关系统数据,实现生产运营过程中燃料掺配、运行优化、智能灵活调峰、安全智能管控等核心业务场景智能化升级,提升生产运营的智能化水平和效率。 设备全生命周期管理。 基于大模型和机器人等人工智能技术,通过对汽轮机(含燃气轮机)、发电机、锅炉受热面等关键设备多类型数据进行实时状态监测,实现设备状态全景监测、健康量化评估、隐患识别与故障预警、剩余寿命预测、运行方案调整、异常分析判断和隐患闭环管理。 智能技术监督及评价。 依托锅炉、汽轮机(含燃气轮机)、发电机等关键设备的海量运行数据与火电技术监督工作相关资料,基于火电大模型多模态分析能力,深度融合火电特色场景,提升技术监督的智能化和人员专业能力。         (六)人工智能+核电。 围绕核电安全发展,构建核电安全预警、电站运行事件智能溯源分析、应急响应的智能辅助支持系统,开展核工业特种运维机器人技术攻关,持续推动核电系统的自动启停等技术升级演进,探索人工智能技术助力离子体预测控制、可控核聚变等技术路径,推动核电行业向数据驱动、模型牵引、智能管控的新模式稳步转型。 专栏6  人工智能+核电典型应用场景 核电智能安全管控。 借助数据治理及人工智能技术,聚焦运行事件溯源、技术规格书及运行参数边界条件,智能识别人员、设备、环境的不安全状态,推进安全预警、智能应急响应等场景技术攻关与应用。 核电智能运维。 利用各阶段的构筑物、系统及设备/部件的数据,建立数据驱动的核电厂模型,推动核电人工智能小模型及专业大模型研发,推进人工智能技术在核电系统智能监测、预警、诊断和预测中的应用,提升机组性能智能诊断和优化能力,提升关键设备、系统及机组的一键启停等能力,拓展高放射性、水下及密闭空间等高危场景机器人作业的范围与深度。 可控核聚变智能控制。 结合可控核聚变装置多物理场耦合特征,基于人工智能技术开展可控核聚变智能控制系统研究,研发等离子体位形实时预测-磁约束参数自适应调控智能模型,实现托卡马克等离子体稳态运行的智能化控制。         (七)人工智能+煤炭。 聚焦地质勘探、煤矿采掘(剥)、煤炭洗选、生产调度、安全管控、设备管理等典型场景,稳定获取复杂地质、多工况以及多时空协同条件下的各种工况数据,融合应用智能模型,实现生产过程智能控制与自主决策,助力少人无人化作业常态化运行,稳步推进减人、增安、提效,进一步夯实煤炭在能源安全中的兜底保障作用。 专栏7  人工智能+煤炭典型应用场景 煤矿地质勘探数智赋能。 基于煤矿专业大模型,融合地面高精度勘探与井下动态智能探测的新技术,构建复杂地质条件下的煤矿地质数据库,实现矿井地质信息的全过程动态协同管理和预警,保障矿井高效、快速、绿色、智能生产。 井工煤矿采掘工艺优化与智能控制。 通过多模态感知、大小模型融合、设备群协同控制和工艺动态优化,挖掘煤岩特征信息,驱动采煤与掘进工作面设备群智能截割、自主决策与协同控制,实现采煤工作面生产系统自主运行、掘进工作面探-掘-支-锚-运高效协同以及少人无人化常态化作业,大幅提升采掘效率和安全水平。 露天煤矿自主采装与运输无人化。 推进大模型模拟爆破参数与穿爆作业的融合,应用人工智能技术快速解析采剥进度,实现采-运-排生产系统内挖掘机、排土推土机以及其他辅助作业设备常态化远控或自主作业,以及矿用卡车无人驾驶规模化运行,提升穿爆智能化程度和精准度,大幅减少坑下作业人员数量,提升露天煤矿生产效率与安全水平。 煤炭质量快速检测与智能洗选。 采集与构建煤质特征数据库,实时动态预测煤炭灰分、硫分、挥发分、水分及元素含量等关键指标,实现煤质特征智能识别,大幅提高煤质在线检测精度,实时反馈煤质在线检测数据,优化调节选煤生产工艺参数,提高煤炭产品质量合格率和稳定率。开发煤炭洗选专业模型,建立工业数字孪生体,实现煤炭洗选全过程的信息动态监测、趋势预测及协同管理。 煤矿重大设备状态监测和智能运维。 建立重大设备实时运行状态和润滑、温震等检测数据融合大模型,实现故障诊断和智能预警,推动煤矿设备预防性检修,大幅降低故障影响生产时间,有效降低维护成本。         (八)人工智能+油气。 聚焦跨专业协同研究、现场作业操控、生产运行管控等方向,推动勘探地质目标智能评价、开发方案智能优化、钻井压裂等作业参数智能调整、炼化装置智能运行、管网运行实时仿真,加快智能钻机、机器人、无人机、智能感知系统等智能生产技术装备的研发与应用,推动生产现场等全过程智能联动与自动优化,推动油气产业链智能化升级建设。 专栏8  人工智能+油气典型应用场景 油气勘探智能赋能。 提升面向地震、测井、岩心露头等勘探专业领域的软件智能化水平,构建面向地震测井处理解释的专业大模型,打造面向有利地质目标综合评价的智能应用系统,实现可控震源智能辅助驾驶、地震检波器埋置等机器人示范应用。 油气藏开发与生产智能管控。 研发油气开发数据与知识智能化技术、智能开发优化软件和专业大模型,打造大模型驱动的协同研究与生产管理决策平台,构建面向智慧油气田开发生产管控的新模式。 海洋油气生产环境预测维护。 聚焦海洋油气生产过程环境保护和重大风险防范、治理等需求,通过生产环境智能监测与异常预警、固废处理智能管控、溢油智能识别与应急预测等手段,形成覆盖油气田全域生态环境状况的风险预知、态势感知、事故早知和认知决策一体化能力。 工程技术智能优化。 推进地面工程智能设计、钻井参数智能优化、录井实时智能判层、储层改造及智能故障诊断与风险评估,实现井控机器人示范应用,保障复杂地质环境下施工安全高效。 管网仿真及智能调控。 推进市场洞察预测、管网实时仿真及动态优化、高效智能站库运行、空天地一体线路管理及关键设备监测预警,实现“黑屏”智能调控,提升油气管网安全生产、油气保供与公平服务能力。 炼厂生产营运一体化优化。 面向全流程计划优化、安全生产智能识别、设备预防性维修等环节,攻关新材料研发科学计算大模型,通过大小模型协同、混合建模等技术手段,减少工艺波动,降低安全事故发生概率,提升生产运营智能化水平。  三、加大关键技术供给        聚焦能源领域数据孤岛化、算力碎片化、算法黑盒化、算力高耗能等技术瓶颈,推动开展适用能源领域的数据、算力、算法等共性关键技术攻关。 (一)夯实数据基础。针对能源领域高质量数据集构建和数据安全需求,推动数据智能标注、智能增强、数据合成等技术应用,推进能源数据分类分级技术、隐私计算技术以及智能数据动态加密和跨域可信溯源等技术研发,优化数据分享机制,加快形成能源领域高质量数据集,确保能源数据全流程安全可靠。 (二)强化算力支撑。针对能源领域租建结合模式下的多元异构算力融合利用需求,开展多元异构算力统一调度、任务智能编排、存算网一体化融合、算力池化等关键技术攻关,提升智算服务水平。持续开展能源算力需求监测,统筹规划算力、电力和通信网络资源,构建算力、电力深度融合的算电协同发展机制,不断提高算力中心绿电比例。 (三)提升模型基础能力。针对能源领域对于模型安全性和可解释性的需求,推动模型算法、应用系统等安全能力建设,加大多智能体协同、可解释性、模型轻量化推理等技术的研究,持续深化机器视觉、多模态、时序预测等人工智能关键技术在能源领域的应用研究,推动人工智能与能源领域软件深度融合。针对人工智能计算耗能问题,加快突破人工智能绿色低碳技术瓶颈,研究柔性直流供电、模块化小型堆等能源供给技术,鼓励数据中心液冷技术、废热回收、备电集约化等高效能源综合利用技术的应用。  四、保障措施         (一)强化组织实施。各地方能源主管部门和相关中央企业要根据意见要求,建立健全工作机制,统筹衔接好相关规划,结合实际加快推动本地区、本单位“人工智能+”能源的发展,做好各项要素保障,探索构建安全治理体系,形成上下联动、层层落实、安全发展的工作格局,加快推进人工智能在能源领域融合应用的技术研发、示范试验、推广应用等工作。        (二)推动协同创新。围绕能源领域人工智能融合创新应用关键共性技术和配套专用技术,推动建设一批行业研发创新平台。鼓励企业牵头联合科研机构、高校、社会服务机构等单位,建设以技术创新融合应用为目标的跨领域、跨学科的“人工智能+”能源创新联盟,深化产学研用合作,构建开放协同、共创共享的能源智能化创新生态体系。         (三)加强标准规范建设。在深入总结应用示范实践的基础上,加快编制能源数据治理、多元异构算力融合、典型场景设计等一批技术标准规范,推动能源领域人工智能标准体系建设,探索建立人工智能应用评估指标体系和行业级人工智能应用标准测试平台,提升能源领域人工智能技术安全应用水平。鼓励能源企业主导制定国际标准,以技术标准“走出去”带动人工智能技术和产品在海外能源市场推广应用。         (四)开展试点示范。组织开展能源领域人工智能应用试点示范,遴选一批可复制、易推广的场景和企业标杆应用。鼓励开展能源和交通融合、油气和新能源融合等跨领域、跨行业典型场景示范。能源领域人工智能应用相关技术装备优先纳入能源领域首台(套)重大技术装备支持范围。支持具备条件的地区和企业,因地制宜开展能源领域各类人工智能应用试点示范,在技术创新、商业模式、发展业态、体制机制等方面深入探索、先行先试。         (五)加大支持力度。充分发挥中央财政资金带动作用,依托能源领域、人工智能领域国家科技重大专项和重点研发计划等科技专项,有序推动能源领域人工智能技术应用创新。发挥多层次资本市场支持科技创新关键枢纽作用,引导社会资本参与人工智能科技项目实施和成果转化应用。         (六)完善人才培育生态。鼓励能源企业与高等院校、科研院所共建“人工智能+”能源人才培养基地,以行业需求为导向设计跨学科课程体系,重点培养具备能源系统知识、人工智能算法应用能力的复合型人才,通过产教协同增加复合型人才供给。  国家发展改革委  国家能源局 2025年9月4日
  • 《张宏江:人工智能的长远发展需要有人坐冷板凳》

    • 来源专题:数控机床——战略政策
    • 编译者:icad
    • 发布时间:2019-03-28
    • 从金山CEO退休两年后,除了在源码资本任职投资合伙人,张宏江又在北京智源人工智能研究院担任首届理事长,致力于推动不同行业分享大数据,让从事基础研究院所和 AI 的创业公司更容易获得数据。    从金山CEO退休两年后,除了在源码资本任职投资合伙人,张宏江又在北京智源人工智能研究院担任首届理事长,致力于推动不同行业分享大数据,让从事基础研究院所和 AI 的创业公司更容易获得数据。    作为一个横跨产学研、投资四界的人,他对 AI 产业发展无疑有着更全面的了解。近期他接受了 我们的专访,讲述了AI产业投资、AI公司发展和人才培养三方面的内容。      谈 AI 投资:投资正趋于理性    问:从投资角度,你觉得中国在“智能+”领域投资的短板是什么?    张宏江:中国人工智能投资聚焦在应用层,算法、芯片这些基础层的公司与美国相比确实少一些,这跟我们的发展阶段相关,但这会逐渐改善。    问:在应用层,你看好哪些“智能+”领域的发展前景?    张宏江:我不是应用领域的专家,但发展前景一般与这两点有关:一是应用场景能够产生大数据,二是能够产生很多收入或者它本身就有很大的资源,也就是钱多、数据多的行业,比如金融、医疗和移动互联网。    问:钱多、数据多的行业有很大的发展前景,但今年的投融资数据显示,获得最多融资额的是智能制造,这说明了什么?    张宏江:应用场景越大,未来所能够影响的市场越大,显然潜力也就越大。我们谈的所有概念都是相对概念,制造业是中国最大的产业,进一步智能化后显然有最大的市场,所以在这个领域吸引到投资是正常的、比较健康的。    问:去年年初,李开复等业内人士就预言今年年底寒冬来临,AI 泡沫会破掉,不过投融资数据同样显示,相比去年,今年的 AI 投资事件在数量减少了 1/3,但整个投资的融资额度却增加了将近 1/4,AI 投资的热度似乎不降反升了?    张宏江:我们说泡沫破灭还是寒冬来临都是相对概念。换句话说,今天人们看人工智能公司已经不像三年前,钱就会跟着几个从大学出来的博士或者教授,从这一点来说泡沫已经破了。   今天投资额度的增加在于很多钱投到了 B 轮以上的公司,所以(总体投资)数量降低是正常的,这恰恰说明了整个市场趋于成熟,投资也越来越理性,人们对于一家 AI 公司所需要具备的核心竞争力在什么地方也越来越清楚。   另外,关于投资寒冬,其实大家更多看的是经济周期,当经济下行的时候投资一定会变得更加小心。    问:如果对 AI 初创企业的创业者们说一句话,你会说什么?    张宏江:想清楚自己到底要做什么。第一个问题是你覆盖的用户到底有没有这种需求;第二个问题是有这种需求,你和现在已经在满足他们这种需求的公司有什么核心的差异化。   谈 AI 公司:要形成数据生产的闭环    问:你强调 AI 公司的护城河是数据和人才,算法和技术形成不了商业模式,但关键问题是他们如何获得高质量的数据以及正确地使用数据?    张宏江:如何获取高质量的数据这个问题今天已经有非常好的答案,这也是为什么这一波AI浪潮能够起来的根本原因之一。20 年前人们做神经网络的时候,并不是完全不知道算法应该怎么往下延伸,而是说那时候根本就没有这么多数据。但尤其过去 10 年移动互联网的快速发展,人和数据有了大量的深度交互,这本身就是产生高质量标注数据的过程。比如用手机拍一张照片,你至少知道是谁在什么地方、什么时候、用哪个手机照的,这些摄像机参数都有,然后就能很容易做场景识别。   同样的道理,我认为未来的人工智能公司一定是所谓的闭环公司,就是说你有产品,产品跟用户进行交互,这个过程中又产生大量反馈去改善产品以及用户体验,吸引更多用户之后,也就能产生更多数据从而训练更好的算法。整体来说是一个循环,尤其是移动互联网的“环”。   所以我不认为产生高质量大数据是个问题,实际上更大的问题是怎么分享不同行业的大数据,怎么让做基础算法研究的人能够用它训练更好的算法,这是核心问题所在。    问:既然数据起决定性作用,那是不是可以认为未来没有数据的 AI 公司都会死掉?    张宏江:也不能说它会死掉,总归会留下一些AI技术和解决方案 咨询公司,但这些公司很难成为真正的具有领军地位的平台型公司。   问:反过来看,如果现在的大数据公司或者数据平台快速地跟进算法或技术,那他们在未来竞争中应该更有优势。   张宏江:没错,因为今天那些在人工智能上有优势的公司,比如 Google,Facebook,微软,Amazon 的核心在于他们能够获得大量实用场景的数据,当然他们也有很强的技术团队,尤其是 Google 和微软。另外像中国的 BAT、今日头条、美团也一样,他们能够持续获得大量高质量的数据,加上他们本身的技术实力,他们成为人工智能领军企业是毫无疑问的。    问:即将举办的 2018 大数据技术大会(BDTC)的演讲议题至少有一半都与人工智能技术强相关,怎么看大数据会议“AI 化”的趋向?    张宏江:大数据会议持续举办很多年了,甚至没有因为人工智能的热度把名字给改掉,我感到非常高兴。大数据我们谈了 15 年,但它的应用落地很有限,深度学习算法的突破给大数据的应用提供了强有力工具。在智能化之前,企业首先要先做到数据化,要意识到用数据来驱动业务、驱动产业。所以对于大数据的未来发展,我们应该非常乐观地认识到它是这次产业革命最核心的生产资料,而再利用人工智能这种工具,会找到更好、更多的大数据应用场景。    谈 AI 人才:一窝蜂扎堆的方式不可取    问:从技术人员角度,你认为 AI 时代需要的优秀人才都有哪些特征?    张宏江:任何时代业界对技术人员的要求都是同样的,最核心的是热爱技术,有扎实的技术基础,动手能力极强,只是说 AI 时代可能对人才的技能要求更高,人工智能工程师不只是写程序,还要学会不断开发算法,要有很强的数据分析能力、应用场景的理解能力。    问:大学是为企业输送 AI 人才的重要基地,去年以来有一个显著的趋势是至少有 50 家高校的本科都设置了人工智能学院。在人才培养方面你与高校也有交流,你觉得高校培养 AI 人才方面存在哪些误区?    张宏江:任何一窝蜂的做法都不可取,尤其是大学都这样做,却不看具体要求。比如我们 15 年前都做软件学院,今天谁告诉我软件学院跟计算机学院的区别?10 年前大家开始开设电商专业,电商专业到底学的是什么?今天人工智能的兴起让我们对人工智能人才的技能要求更多,那我们本科教育应该去加强人工智能课程的设置和质量,让它成为计算机专业方向的侧重方向。你做人工智能专业修不修计算机基础课?要不要懂计算机系统架构?要不要懂计算机基本算法?你前面还要学数学、代数,这些都要做。   所以我看不出今天一窝蜂做人工智能本科专业对这个产业有任何益处。五年以后,如果需要更多芯片人才、网络人才怎么办?10 年前为什么不设 AI 本科专业?我们需要的恰恰是建立起持之以恒的计算机本科教育,强调计算机基础能力,需要课程内容设置更扎实、丰富,包括教材、讲课的内容要不断跟上技术发展的需求。    问:另一方面,这么多人工智能学院的成立也说明对 AI 人才的需求很旺盛。    张宏江:我没有看到美国排名前 50 的学校一窝蜂地扎堆。过去 30 年人工智能都在坐冷板凳,因为热了再开这个课,那五年以后再坐冷板凳怎么办?我们要的是扎实的本科教育,不是追噱头的一窝蜂。    问:美国的 AI 人才教育有什么值得借鉴的地方?    张宏江:过去几十年我们一直在向美国学习教育(课程)怎么设置,这种过程应该持续下去,但我们经常学到的是外表或者是一些“时髦”的东西,比如今天大学大多强调的是论文、SC 检索。   我前段时间跟一位院士聊天,聊到在学术上中国人工智能的人才数量已经不少。他说量是比以前增加了很多,但你看看他们在做什么?国际人工智能大会上发表的文章数量已经不少,但这些文章据说 90% 都分布在最热的深度神经网络,就跟设置本科人工智能专业的情形一模一样,这是令人忧虑的。   大家有没有想过今天的神经网络或者深度学习缺陷在哪?它不能解决的问题是什么?这些算法未来的演进是什么?是不是应该在 AI 的其他地方再多做点?我们更应该强调持续的基础研究,真正能够坐很长时间冷板凳的东西。    问:你认为目前人们对人工智能行业的发展最需要重视的问题是什么?    张宏江:最大的风险是人们认为人工智能只有深度学习或者只有神经网络学习。我们知道每个算法都有它的局限性,如果只考虑一种算法,也应该更多地看一看这种算法的改善空间,这种算法能不能跟其他算法结合,从而应用到更好的应用场景去创造更大的价值。    今天人工智能取得的突破都是长期坐冷板凳的结果,下一个突破可能也在于今天坐冷板凳的那些人,希望 AI 的基础研究能够放眼更远的未来。