《青岛能源所开发出“油脂结构定制化”的微藻细胞工厂》

  • 来源专题:生物科技领域知识集成服务
  • 编译者: 陈方
  • 发布时间:2020-09-10
  • 甘油三酯(TAG)是地球上能量载荷最高、结构最多元的生物大分子之一,因此它们是地球上动物、植物和人体中能量与碳源的存储载体与通用货币,也是生物柴油的重要来源。是否能够“定制化设计”TAG上三个脂肪酸(FA)的组成,来服务于精准健康与特种生物燃料合成呢?青岛能源所单细胞中心研究人员证明,自然界中存在对于二十碳五烯酸(EPA)、亚油酸(LA)等多不饱和脂肪酸分子(PUFAs)具有选择性的II型二酰甘油酰基转移酶(DGAT2),并基于此示范了TAG之PUFA组成“定制化”的工业微藻细胞工厂。这一发现为利用合成生物学手段,生产自然界不存在或稀有的、具有特殊燃料特性或营养功效的“特种TAG”打开了大门。研究成果在线发表于《分子植物》。
    微拟球藻(Nannochloropsis spp.)是一种能够将阳光、海水和二氧化碳直接转化为TAG的工业产油微藻,其藻油中同时含有饱和脂肪酸(SFAs)、单不饱和脂肪酸(MUFAs)与PUFAs。如果MUFAs含量高,藻油较适合作为优质液体燃料,服务于能源市场;而如果PUFAs含量高,藻油则更适合作为人体保健品。研究小组前期在微拟球藻发现了三个DGAT2,分别对于SFAs、MUFAs和PUFAs这三大类FA具有一定的底物偏好性。但是,PUFAs中涵盖了数十种不同饱和度和链长的FA分子,其化学特性不同、营养功效各异,能否在单种PUFA分子的精度,实现TAG分子的理性设计呢?
    针对上述问题,研究小组在微拟球藻中又发现了两个全新的DGAT2蛋白元件,它们均在叶绿体上参与了TAG组装,却分别对二十碳五烯酸(EPA)和亚油酸(LA)具有特异的底物偏好性。继而通过在微拟球藻中调节上述DGAT2的转录水平,实现了TAG分子上EPA和LA组成的理性控制。工业微藻TAG中EPA和LA组成可控性的证明,为大规模、低成本合成自然界中稀少或不存在、却具特殊药物功效或燃料特性的TAG分子奠定了基础。同时,这种通过利用油脂组装元件之间不同的底物选择性,来理性设计TAG分子结构的方法,为基于工业微藻乃至动植物底盘来规模生产“精准燃料”和“精准营养”提供了崭新思路。
    丁陈君 摘编自http://www.qibebt.cas.cn/xwzx/tpxw/201812/t20181226_5220848.html
    原文标题:青岛能源所开发出“油脂结构定制化”的微藻细胞工厂

相关报告
  • 《青岛能源所开发出 “油脂结构定制化”的微藻细胞工厂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-12-27
    • 甘油三酯(TAG)是地球上能量载荷最高、结构最多元的生物大分子之一,因此它们是地球上动物、植物和人体中能量与碳源的存储载体与通用货币,也是生物柴油的重要来源。每个TAG分子由一个甘油分子和其上搭载的三个脂肪酸(FA)分子构成,后者的饱和度与碳链长度等特征,决定了TAG分子的营养功效、燃油特性与经济价值。是否能够“定制化设计”TAG上这三个FA的组成,来服务于精准健康与特种生物燃料合成呢?青岛能源所单细胞中心证明,自然界中存在对于二十碳五烯酸(EPA)、亚油酸(LA)等多不饱和脂肪酸分子(PUFAs)具有选择性的II型二酰甘油酰基转移酶(DGAT2),并基于此示范了TAG之PUFA组成“定制化”的工业微藻细胞工厂。这一发现为利用合成生物学手段,生产自然界不存在或稀有的、具有特殊燃料特性或营养功效的“特种TAG”打开了大门。这一成果在线发表于Molecular Plant。   微拟球藻(Nannochloropsis spp.)是一种能够将阳光、海水和二氧化碳直接转化为TAG的工业产油微藻,在世界各地作为一种燃料细胞工厂和高值饵料藻规模培养。其藻油中同时含有饱和脂肪酸(SFAs)、单不饱和脂肪酸(MUFAs)与PUFAs。如果MUFAs含量高,藻油较适合作为优质液体燃料,服务于能源市场;而如果PUFAs含量高,藻油则更适合作为人体保健品。单细胞中心前期在微拟球藻发现了三个DGAT2,分别对于SFAs、MUFAs和PUFAs这三大类FA具有一定的底物偏好性(Xin, et al, Mol Plant, 2017)。但是,PUFAs中涵盖了数十种不同饱和度和链长的FA分子,其化学特性不同、营养功效各异,能否在单种PUFA分子的精度,实现TAG分子的理性设计呢?   针对上述问题,青岛能源所单细胞中心辛一、申琛等人在微拟球藻中又发现了两个全新的DGAT2蛋白元件,它们均在叶绿体上参与了TAG组装,却分别对二十碳五烯酸(EPA)和亚油酸(LA)具有特异的底物偏好性。继而通过在微拟球藻中调节上述DGAT2的转录水平,实现了TAG分子上EPA和LA组成的理性控制(图1)。EPA和LA均属于“人体必需脂肪酸”,人体自身无法合成,必须从食物中获得。EPA对于治疗冠状动脉心脏病、高血压和炎症有效,而LA则能降低血液胆固醇,预防动脉粥样硬化。因此,工业微藻TAG中EPA和LA组成可控性的证明,为大规模、低成本合成自然界中稀少或不存在、却具特殊药物功效或燃料特性的TAG分子奠定了基础。同时,这种通过利用油脂组装元件之间不同的底物选择性,来理性设计TAG分子结构的方法,为基于工业微藻乃至动植物底盘来规模生产“精准燃料”和“精准营养”提供了崭新思路。   本项目由青岛能源所单细胞中心徐健研究员主持,与中国科学院水生生物研究所胡强研究员、韩丹翔研究员等合作完成,得到国家自然科学基金、山东省自然科学基金和青能所“一三五”项目的支持。(文/图 辛一)
  • 《青岛能源所开发出高产多不饱和脂肪酸的细胞工厂》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-10-15
    • 多不饱和脂肪酸(Polyunsaturated fatty acids, PUFAs)是构成细胞膜的重要结构成分,具有重要的生理功能。其中,具有代表性的ω-3型多不饱和脂肪酸二十碳五烯酸(EPA)和二十二碳六烯酸(DHA),是人体自身不能直接从头合成又不可缺少的重要营养素。EPA被誉为“血管清道夫”,具有调节血脂、降低血液粘稠度、预防血栓形成等生理活性,DHA是大脑和视网膜组织中磷脂的重要组成物质,它们对促进人体的健康具有重要的意义。目前人们获取EPA/DHA产品的主要途径是通过海洋渔业资源提取(例如鱼油),然而,随着海洋渔业资源的日益耗竭、以及海洋环境的逐年恶化,传统来源的EPA/DHA产品面临着资源难以持续、污染风险大和感官品质低等问题。因此,研究开发新的EPA/DHA资源具有巨大的应用前景。裂殖壶菌(Aurantiochytrium sp.)是目前工业化发酵生产PUFAs的代表性物种之一,它具有高生物量、高油脂含量、易培养等特点。2010年,利用裂殖壶菌生产的DHA藻油被我国卫生部批准为新资源食品,其食品安全性已得到广泛的认证。但是由于裂殖壶菌作为一种非模式真核生物,其遗传操作体系还不完善,人们对其油脂合成路径的理解也非常有限,成为进一步通过代谢工程提升和改良其油脂产量和品质的主要障碍。   青岛能源所代谢物组学研究组长期以来致力于裂殖壶菌的遗传改造、作用机制及代谢工程研究,通过人工改造裂殖壶菌提高其EPA/DHA产量,用于补充现有PUFAs产品的不足。近日,该研究组基于病毒2A肽自剪切的特点,成功开发了基于2A肽的裂殖壶菌的多基因表达体系,实现了裂殖壶菌的多基因表达(图1A),并利用该体系将外源的EPA合成基因簇在裂殖壶菌中进行异源表达,使得EPA产量提高5倍。该成果被食品科学领域的知名期刊Journal of Agriculture and Food Chemistry以内封面文章的形式报道(图1B)。同时,该研究组通过生物信息学方法首次鉴定到特异性作用于裂殖壶菌PUFA合成途径的磷酸泛酰巯基乙胺基酰基转移酶(Phosphopantetheinyl transferase,PPTase)。通过生理生化实验确定该PPTase的功能特性,并将其在裂殖壶菌中进行过表达,使得裂殖壶菌的DHA和PUFA产量分别提高36%和18%(图2)。相关成果也已发表于Biotechnology for Biofuels。   基于2A肽的多基因表达系统克服了裂殖壶菌在遗传操作工具不足难以进行多基因共表达的困难,这一成果为裂殖壶菌的遗传改造提供了新的技术手段,同时也为其他真菌中多基因共表达提供了范例。作用于裂殖壶菌PUFA合成途径的PPTase的发现,加深了人们对裂殖壶菌PUFA合成的理解,为进一步的遗传改造提供了新的靶点。这些成果展示了裂殖壶菌可以作为PUFA生产的底盘细胞,具有巨大的代谢工程开发潜力。   以上工作由代谢物组学研究组完成,崔球研究员和宋晓金副研究员为通讯作者。以上工作得到了国家重点研发计划、山东省自然科学基金重大基础研究项目资助