《深圳先进院提出传统水凝胶材料实现可控三维形变普适性方法》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-04-06
  • 近日,中国科学院深圳先进技术研究院纳米调控与生物力学研究室杜学敏副研究员团队研发出一种离子交联型水凝胶,首次报道了通过生物兼容性离子(Na+/Ca2+)触发水凝胶可控三维形变,并揭示了其内外反转三维可逆形变机制。相关论文以Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels(离子触发内外反转三维可逆形变水凝胶)为题在Science合作期刊Research上在线发表(Research, 2019, DOI: 10.1155/2019/6398296),杜学敏副研究员是论文共同第一作者和通讯作者,崔欢庆助理研究员为本文共同第一作者。

      近年来,仿生可控三维形变材料在组织工程与人工器官等医学领域应用广泛,但传统材料或是欠缺可控形变能力,或是刺激调控手段面临安全性挑战,因此极大限制了传统生物材料医学应用。如何成功实现传统生物材料的可控三维形变,及采用生物相容性手段调控形变,仍是材料生物学应用面临的一大难题。

      为此,杜学敏研究团队基于前期在材料可控形变设计经验(Advanced Materials, 2017, 29, 1702231;Advanced Materials Technologies, 2017, 2, 1700120;Advanced Functional Materials, 2018, 28, 1801027),创新性地仿生自然中触之形变植物的构造原理,通过表面定向排列微阵列结构与自上而下的梯度交联设计结合,成功实现钙离子交联的海藻酸钠水凝胶可控三维形变。研究人员将所得螺旋形水凝胶置于0.1 M NaCl溶液中,发现三维螺旋形会逐渐变形为二维平面结构,最终结构进一步反转形成微通道朝外的反向三维螺旋结构。当反转形变后的三维螺旋结构重新浸泡在0.1 M CaCl2溶液中时,样品会恢复到微通道朝内的初始三维螺旋结构。杜学敏研究团队还发现,将三维形变水凝胶置于NaCl与CaCl2的混合溶液中,通过调节溶液中Na+/Ca2+浓度比例,还可成功“冻结”海藻酸钠水凝胶三维动态形变过程中的瞬态形状。而且,通过耦合多种不同取向微阵列结构,杜学敏研究团队成功实现了类似DNA分子的双螺旋结构,及自然界中各种复杂花的三维形状,还成功模拟了仿生花在离子溶液中动态绽放与闭合。

      该项研究揭示了应用广泛的海藻酸钠水凝胶的三维可控形变设计机制,不仅为传统材料可控形变设计提供了一种普适性方法,而且将极大拓展可控形变与响应性海藻酸钠等水凝胶在再生医学与柔体机器人等领域广泛应用。

      该研究工作得到了科技部重点研发专项(2017YFA0701303)与粤港科技合作资助计划(2017A050506040)等项目资助。

相关报告
  • 《深圳先进院脑所团队研发适用于活体神经调控的柔性光遗传技术》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-08-01
    •         国际学术期刊Advanced Optical Materials近日在线发表了中国科学院深圳先进技术研究院-MIT麦戈文联合脑认知与脑疾病研究所研究团队的最新成果Ultra-soft and Highly Stretchable Hydrogel Optical Fibers for In Vivo Optogenetic Modulations(DOI:10.1002/adom.201800427)。该研究首次采用柔性可拉伸的水凝胶光纤,在动物活体水平实现了对目标神经元的选择性调控。这一“在体柔性光遗传技术”的建立,有望为神经精神疾病的治疗提供新的工具。   由于光遗传技术同时兼具毫秒级的时间分辨率和细胞选择性,已经被广泛地应用于神经环路的精准解析和调控,并且在神经精神疾病的治疗研究中展现出了巨大的应用潜力。目前,在实施活体水平光遗传学调控的过程中,研究者主要是通过埋置在体内的石英光纤将特定波长的激光导入,从而实现对目标神经组织的选择性调控。然而,由于传统的石英光纤具有较高的杨氏模量(1-10GPa),与神经组织(1-10kPa)极不匹配,长期植入后可能会引发光纤周围神经组织的反复损伤,降低调控的效果。更为重要的是,传统光纤与神经组织之间巨大的力学性能差异,严重限制了光遗传技术在大形变神经组织(例如脊髓、视神经、迷走神经、坐骨神经等)中的应用。   为了解决上述问题,研究团队合成了具有高导光性的海藻酸钠-聚丙烯酰胺水凝胶材料,并且在此基础上制备出了直径为100-600微米的水凝胶光纤。制备的水凝胶光纤具有优异的光学和力学性能,在空气中测得的光传导损失率仅为0.25dB/cm,杨氏模量与神经组织接近(约60kPa),并且能反复拉伸至初始长度的400%以上。借助这种水凝胶光纤,可以稳定地诱发出神经元的特异性相应,并实现对动物行为的控制。此外,与传统的石英光纤相比,这种水凝胶光纤具有更佳的组织相容性。并且在经过长期的体内埋植后,水凝胶光纤仍能基本保持原有的光学和力学性能。得益于上述特性,团队研发的水凝胶光纤将为光遗传技术在脊髓和周边神经的应用乃至未来的临床化发展提供重要的技术支持。   王璐璐和钟成为本文的共同第一作者,王立平研究员和鲁艺副研究员为共同通讯作者。这项工作是上述团队继光电极及神经界面技术后(Biomaterials,2012;Journal of Neuroscience Methods,2014;Nature Communications,2016;Electrochemistry Communications,2017),在光遗传学技术领域取得的又一重要进展。该研究受国家自然科学基金委、中国科学院、广东省科技厅、深圳市科技创新委、深圳市发展改革委等部门项目的资助。
  • 《华科大:4D打印材料组合,实现可控的压电转换》

    • 来源专题:数控机床——前沿技术
    • 编译者:icad
    • 发布时间:2020-03-29
    • 《Advanced Science》上发表了一篇华中科技大学史玉生教授团队的文章,论文题目为“A Material Combination Concept to Realize 4D Printed Products with Newly Emerging Property/Functionality”,文章提出了一种材料组合概念,来构造属性/功能可控地的4D打印物体。 4D打印是一种新兴技术,打印出的结构形状,特性或功能可以在外部刺激下随时间可控地变化。但是,大多数现有的4D打印产品都只关注其几何形状的变化,而不管其属性以及实用功能的可控变化。 史玉生教授团队再论文中提出了一种材料组合概念,来构造属性/功能可控变化的4D打印装置。 该装置由导电和磁性部件组成,集成后的装置可以显示压电特性。因此,基于电磁引入原理,装置被赋予将机械能转换为电能的能力。 通过使用Comsol软件的数值模拟方法来解释4D打印装置的工作机制,通过调节各种参数来促进其性能的进一步优化。由于具有自供电,快速响应和灵敏的特性,因此4D打印的磁电装置可以用作压力传感器来警告非法入侵。这项工作开启了柔性磁电器件的新制造方法,并为属性更改和功能更改的4D打印提供了新的材料组合概念。 在这项工作中,通过组装SLS打印的磁性多孔结构和SLM打印的螺旋结构,实现了一种新型的4D打印。与以前的4D打印品中的形状变形不同,我们的集成4D打印装置在施加的外部压力下显示出可控地改变的压电特性,以及用作自供电压敏显示器的新功能。由于螺旋线中的磁通量变化,组装的磁电装置可以在外部压力下产生电脉冲,从而可用于感知压力。在材料和结构的新颖设计的基础上,由外部压力产生的形状变化导致发电性能的可控变化和新功能的出现。因此,我们实现了三种形式的4D打印,同时包含形状,特性和功能的变化。对于4D打印磁电器件,NdFeB粉末的含量,磁场方向,多孔结构和螺旋结构之间的距离,压缩速度和压缩比等几个参数都会影响磁导率。输出电压值。在最佳条件下,适用于智能自供电压力传感器的集成4D打印设备可以产生11.8 μV的输出电压。相信这项工作可以通过提出一种材料组合概念,为性能改变和功能改变的4D打印奠定基础。我们期待扩展我们的4D打印磁电设备的应用。