《电化学:移除海洋污染物镍的新方法》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2017-01-17
  • The same deposit that builds up in many tea kettles or water pipes in areas where calcium-rich water is the norm might be just the (cheap) ticket to rid contaminated seawater of toxic metals. This is according to a research group led by Charlotte Carré of the University of New Caledonia in the French Pacific territory of New Caledonia and published today in Springer's journal Environmental Chemistry Letters. The researchers dipped electrodes made from galvanized steel into contaminated seawater and ran a weak current through it. Within seven days, up to 24 percent of the nickel it initially contained was trapped in a calcareous build-up of limestone.

    Nickel mining activities in New Caledonia itself are causing the subsequent pollution of local coastal waters. The remediation of metals brings considerable challenges since these elements, given their chemical properties, can never be degraded but only stabilized. Therefore Carré's research team set out to find an efficient, rapid and inexpensive method by which to remove such toxic metals from the contaminated waters.

    The research team dipped cheap and commercially available galvanized steel electrodes into nickel-enriched seawater, and allowed a fairly weak electric current to run through it for seven days.

    According to Carré, the method is relatively inexpensive and easy to use and requires no regular monitoring. "Metal contaminants are attracted and trapped inside a calcareous deposit as long as the structure is connected to a power source," she explains.

    After seven days, the calcareous deposits that formed on the electrodes were rinsed off with distilled water, and inspected using optical and Raman spectroscopy methods. The deposits were found to consist of the chemical calcium carbonate (CaCO3) made up of equal proportions of aragonite (one of two naturally occurring, crystal forms of calcium carbonate) and brucite (the mineral form of magnesium hydroxide). The method did not significantly deplete the levels of calcium and magnesium in the water. Importantly, though, up to 24 percent of the nickel initially added to the water was trapped within the build-up in this manner.

    "These ratios are quite high after only seven days," says Carré.

    After seven days, macroscopic pictures were also taken of the deposit that formed at the surface of the galvanized steel wire. These indicated that the presence of nickel in the solution does not inhibit the formation of the deposit as its thickness remains the same.

    "Our findings disclose a new and efficient method, called calcareous electrochemical precipitation, which has potential applications to remove toxic metals from contaminated waters," says Carré, who believes it can be used to salvage metals for possible reuse. "It is even conceivable to reuse the galvanized steel electrodes, and to charge the electric circuit using renewable energy."

  • 原文来源:https://www.sciencedaily.com/releases/2017/01/170111102949.htm
相关报告
  • 《NOAA回应:海洋污染毒性监测方法》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2017-05-03
    • 毒性,即物质有毒的程度。了解物质的毒性水平对于明确其对人们的健康和环境构成的潜在风险来说尤为重要。科学家们怎么知道物质(如石油、化学处理剂和有毒金属等)在投入海洋或沿海水域时是否会有毒性呢? 确定物质毒性的基本方法是毒性试验,大概过程是将清洁水中生长的健康生物放置于含有已知浓度污染物的水中,然后观察生物何时进入昏睡、生病或死亡,并将这些结果与清洁水中的生物进行比较。 (1)毒性测试的复杂性 在海洋环境中测定毒性的过程是严格、精细且耗时的:必须有未受污染(清洁)水(称为对照)和污染物处理水,最低标准是每组五个容器。实验要不断进行重复,因为测试物种不同,每种测试生物对毒性的敏感程度也不同。科学家需要有多个测试样本来确定对一般生物体有毒的水平和对最敏感生物体有毒的水平,且需要在每个测试容器中放置多于一个的同种生物体,一般是十个。 (2)按时观测 毒性测试的下一步是记录生物体随时间的变化。标准观察期为每天24小时监测,至少监测4天(96小时)。每个监测时间里,必须记录以下内容:每个处理容器和对照容器;活着和正常的生物数量;不正常的生物数量;死亡的生物数量。然后应用统计技术来估计生物体致死或半数致死的毒素中位浓度,并记录结果。关键要记录足够的信息,以便其他人能够完全重复测试。 (3)质量控制偏差 毒性试验的设计必须包括许多功能,以确保结果没有偏差:容器必须随机排列并标号;必须监测水质,以确保所有容器中的温度和氧气浓度保持不变;收集到数据后,研究人员必须计算致死浓度的中位数,即意味着该浓度会杀死一半的测试生物体;此外,实验过程需要重复一次或两次,以确保第一次实验的准确度;最后,研究人员须整理一篇报告,描述实验过程和结果,并且与已发表的其他研究数据进行对比。 (4)使用毒性数据 目前已进行许多毒性测试:如毒性对酶系统的影响、对动物行为变化或产卵量减少的影响等。实验最终确定的毒性浓度数据需要与现场测量或预期的浓度进行比较。如果实地污染物浓度低于实验室认为“有毒”的浓度,那么污染物质并不构成威胁;反之,则要引起关注。 (傅圆圆 编译)
  • 《一种“令人震惊”的治疗感染的新方法 新的研究使用电化学方法治疗金属植入物的感染》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-10-23
    • 钛有许多特性,这使它成为植入物的最佳选择。它的低密度、高刚度、高生物技术强度重量比和耐腐蚀性使它被应用于从牙齿到关节的多种植入物中。然而,一个长期存在的问题困扰着金属植入物:表面也是微生物积累的完美场所,会导致周围组织的慢性感染和炎症。因此,5%到10%的种植体失败,必须在10-15年内移除,以防止血液和其他器官感染。 匹兹堡大学(University of Pittsburgh)斯旺森工程学院(Swanson School of Engineering)的最新研究介绍了一种革命性的治疗方法。由Tagbo Niepa博士领导的研究小组正在利用电化学疗法(ECT)来增强抗生素消灭微生物的能力。 “我们生活在抗生素的危机中:大多数抗生素都在失效。由于大多数微生物产生耐药性,抗菌素停止了工作,特别是在反复感染的情况下。“有了这项技术,电流就不会产生歧视,因为它会破坏微生物细胞膜。更有可能的是,如果细胞同时受到电流渗透作用的挑战,抗生素会更有效。这将使耐药细胞对治疗变得敏感并被消灭。” 这种新方法通过金属基植入物的弱电流,破坏附着微生物的细胞膜,但不伤害周围的健康组织。这种破坏增加了细菌的渗透性,使细菌对抗生素更加敏感。由于大多数抗生素只对将要复制的细胞起作用,它们对休眠的微生物不起作用,而这正是感染复发的原因。ECT会使所有细胞产生电化学应力,使它们变得敏感,从而使它们更容易受到抗生素的影响。 研究人员希望这项技术能改变感染的治疗方式。研究人员将他们的研究重点放在了白色念珠菌(C. albicans)上,这是一种与种植牙相关的最常见和最有害的真菌感染。但是,尽管种植牙是这项新技术的一个令人兴奋的应用,Niepa说,它还有其他潜在的应用,如伤口敷料。